
Design Environment for
Low-Amplitude ThermoAcoustic Engines

DeltaE

Version 3.6

Tutorial and User’s Guide

by
Bill Ward and Greg Swift

Los Alamos National Laboratory

LA-CC-93-8
February, 1996

Revision: 6/16/97

Contents

I Introduction 1
A How It Works . 1
B How This Manual is Organized . 5

II Basic Acoustics 7
A Plane-Wave Resonator . 7
B Plotting . 16
C Further Simple Features . 19

IIIThermoacoustics 23
A Principles of Computations . 23
B The 5-Inch Engine . 26
C Hofler’s Thermoacoustic Refrigerator . 36
D Further Thermoacoustic Features . 52
E Advanced Operations . 53

IV Stirling Systems 57
A Principles of Computation—Stacked Screens 57
B Stirling Cryocooler . 58
C Pulse Tube Refrigerator . 62
D Etched Foil Regenerators . 69

V Advanced Features 71
A Free Targets . 71
B Active Branches . 74
C Turbulence . 82
D Variable Gas Mixtures . 83
E User-Defined Fluid/Solid . 83
F Parameter Linking (Special Modes) . 85
G Thermophysical Properties . 88
H State Variable Plots . 88
I Geometry . 90
J Tuning and Debugging . 91

iii

J.1 Initialization files. 93

VI Reference 95
A General . 95
B Segments . 96

B.1 Ducts, cones . 96
B.2 Lumped elements: compliance, endcap, impedance 101
B.3 Transducers, branches . 102
B.4 Heat exchangers . 106
B.5 Stacks . 109
B.6 Begin, ends, mean-flow mode . 115
B.7 Free targets . 116
B.8 Tees and unions . 118
B.9 Acoustical decomposition . 120
B.10 Thermophysical properties dump 121
B.11 ALPHABETICAL LISTING AND CROSS-REFERENCE 121

C Fluids . 124
C.1 helium . 124
C.2 #.###hear (helium-argon mixtures) 125
C.3 #.###hexe (helium-xenon mixtures) 125
C.4 neon . 125
C.5 air . 125
C.6 nitrogen . 126
C.7 hydrogen . 126
C.8 deuterium . 126
C.9 co2 (carbon dioxide) . 126
C.10 #.###nexe (neon-xenon mixtures) 127
C.11 NGcbProd (natural-gas combustion products) 127
C.12 sodium . 128
C.13 nak-78 . 128
C.14 External—provided by user’s file. 129

D Solids . 130
D.1 ideal . 130
D.2 copper . 130
D.3 nickel . 130
D.4 stainless (stainless steel) . 130
D.5 molybdenum . 131
D.6 tungsten . 131
D.7 kapton . 131
D.8 mylar . 131
D.9 External-provided by user’s file. 131

E Menu Options . 132

E.1 (E)xtra options . 134
F Troubleshooting, Common Problems, and Suggested Techniques 136
G Error and Informational Messages . 138

G.1 Convergence errors . 138
G.2 Input . 139
G.3 Model editing . 140
G.4 Consistency checks . 141

H Known Bugs and Limitations . 142
I Registration . 142
J Obtaining DeltaE . 143
K Acknowledgments . 143

v

List of Figures

I.1 Driven, lossy plane-wave resonator. 2
I.2 Driven, radiating Helmholtz resonator. 2
I.3 Duct network. 2
I.4 Thermoacoustic refrigerator (Hofler style). 3
I.5 Thermoacoustic refrigerator (TALSR style) 3
I.6 Thermoacoustic refrigerator (Garrett and Hofler style) 4
I.7 Beer cooler. 4
I.8 Thermoacoustically driven orifice pulse-tube refrigerator. 5

II.1 A plane-wave resonator; conventional and DeltaE representation. 10
II.2 Pressure and phase vs frequency for the plane-wave resonator. 18

III.1 5-inch engine. 26
III.2 5-inch engine results. Lines are DeltaE results; points are from experimen-

tal data. 35
III.3 Hofler’s thermoacoustic refrigerator. 36
III.4 Hofler refrigerator results. 43

IV.1 The Stirling cryocooler. 60
IV.2 An Orifice Pulse Tube Refrigerator (OPTR). 63

V.1 Modified “beer cooler.” . 74
V.2 “Gamma”-style Stirling machine. 77
V.3 Geometry of Hofler refrigerator example. 90

VI.1 BRANCH (left) and branched ’DUCER or ’SPEAKER (right). 104
VI.2 Enclosed ’EDUCer or ’ESPEaker. 104

vi

Chapter I

Introduction

DeltaE—Design Environment for Low-Amplitude ThermoAcoustic Engines—is a com-
puter program that can predict how a given thermoacoustic apparatus will perform, or
can allow the user to design an apparatus to achieve desired performance. It is currently
running on IBM-compatible or Macintosh PCs, VAX minicomputers, and several types
of UNIX workstations. It is substantially menu-oriented. Input data can be modified or
entered via DeltaE’s menu or using any text editor. Results can be examined via the
menus, the operating system’s text utilities, or any spreadsheet or graphics software.

For good portability, DeltaE is written in FORTRAN-77. The current executable code
for IBM-compatibles requires at least a ’386 processor, because it uses a DOS extender to
create a flat 32-bit memory environment. (An older, version 2.1 DeltaE is still available
which requires 333 kbytes of free RAM, and runs comfortably quickly on a 286 with math
coprocessor, or anything more sophisticated.) All calculations are performed in double
precision.

A How It Works

DeltaE solves the one-dimensional wave equation based on the usual low-amplitude,
‘acoustic’ approximation. It solves the wave equation in a gas or liquid, in a geometry
given by the user as a sequence of segments, such as ducts, compliances, transducers, and
thermoacoustic stacks or regenerators. A glance through the figures below will orient the
reader to the range of cases that DeltaE can handle.

A solution to the appropriate 1-d wave equation is found for each segment, with pres-
sures and volumetric velocities matched at the junctions between segments. In stacks, the

1

Figure I.1: Driven, lossy plane-wave resonator.

Figure I.2: Driven, radiating Helmholtz resonator.

Figure I.3: Duct network.

2

Figure I.4: Thermoacoustic refrigerator (Hofler style). (A=ambient; C=cold)

Figure I.5: Thermoacoustic refrigerator (TALSR style)

3

Figure I.6: Thermoacoustic refrigerator (Garrett and Hofler style)

Figure I.7: Beer cooler.

4

Figure I.8: Thermoacoustically driven orifice pulse-tube refrigerator.

wave-equation solution is found simultaneously with that of the energy-flow equation in or-
der to find the temperature profile as well as the acoustic pressure. The energy flow through
stacks is determined by temperatures and/or heat flows at adjacent heat exchangers.

The user of DeltaE enjoys considerable freedom in choosing which variables are com-
puted as ‘solutions.’ For example, in a simple plane-wave resonator (the first example
below), DeltaE can compute the input impedance as a function of frequency, or the res-
onance frequency for a given geometry and gas, or the length required to give a desired
resonance frequency, or even the concentration in a binary gas mixture required to give a
desired resonance frequency in a given geometry. Typically, a three to five dimensional so-
lution vector is computed for reasonably complicated thermoacoustic engines, where heat-
exchanger temperatures, heat and acoustic powers, efficiencies, etc. are typical solution
elements of interest.

Generally, DeltaE does not include any nonlinear effects that arise at high amplitudes,
so be cautious using it when Mach numbers or Reynolds numbers are too high. THe
principal exception to this rule is the optional turbulence algorithm in ducts, discussed
in Chapter V. There are a number of other approximations used, which will be discussed
below as we encounter them, and in more detail in Chapter VI.

B How This Manual is Organized

We will teach the use of DeltaE by increasingly complicated examples in Chapters II–
IV. Beginning users should read through Chapters II and III until they reach an example

5

of complexity appropriate for their own case, and then systematically modify one of our
examples to suit. Chapter II is just acoustics, without thermoacoustics. It serves to
introduce DeltaE’s input/output formats and editing and plotting features. Chapter III
gives the most complete discussion of the overall principles behind the thermoacoustics
computations, and the simplest thermoacoustic examples. The agreement of these examples
with published experimental data serves as validation of the code. In Chapter IV, features
of DeltaE which are useful in modeling Stirling cycle and more general heat engines
are introduced. Chapter V gives the most in-depth discussion of the advanced options of
DeltaE. Chapter VI is a segment-by-segment reference chapter for the experienced user,
summarizing assumptions built into the computations for each segment, the data format
for each segment, and thermophysical properties.

Some of these examples were run on an MS-DOS machine, others on a Mac. (While
the menu interface differs, the file formats and displays for both platforms are the same.
When there are differences, they will be obvious.) The code was still being debugged and
improved while these examples were being run, so there may be some minor errors and
formatting oddities in these examples.

We assume that the reader of this manual is very comfortable with linear acoustics and
reasonably familiar with thermoacoustics. We will use variables as defined, for example, in
the list of symbols in “Thermoacoustic Engines,” J. Acoust. Soc. Am. 84, 1178 (1988).

6

Chapter II

Basic Acoustics

In this Chapter we use the simplest acoustic segments, such as ducts and endcaps, to
introduce DeltaE’s basic features.

A Plane-Wave Resonator

We begin with a lossy plane-wave resonator, driven from one end by a piston with a fixed
volumetric velocity. We call the input file planewav.in (included in the examples directory
or folder). This input file could have been created from scratch using any text editor, though
this one was made by editing one of DeltaE’s own output files. (N.B.: A DeltaE input
files must always be a plain text file, in the native text format of the machine it is running
on. On some systems, integer numbers must be followed by a decimal point, as in the
example below. Also, some systems require the last line in the file to be followed by an
end-of-line, before the end-of-file occurs.)

TITLE Example 1: Plane-wave resonator

BEGIN Initialize things 0
1.000E+05 a Mean P Pa
100. b Freq. Hz
300. c T-beg K
1000. d |p|@0 Pa
90. e Ph(p)0 deg
1.000E-02 f |U|@0 m^3/s
000 g Ph(U)0 deg
helium

ENDCAP First end 1
1.000E-02 a Area m^2

7

helium

ISODUCT Duct 2
1.000E-02 a Area m^2
0.354 b Perim m
5.00 c Length m
helium

ENDCAP Second End 3
1.000E-02 a Area m^2
helium

HARDEND 4
000 a R(1/Z)
000 b I(1/Z)
helium

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
INVARS 2 0 4 0 5
TARGS 2 4 1 4 2
SPECIALS 0

Several features of DeltaE input files are illustrated here. Input files should be named
something.IN. These files consist of a set of segments whose order and format are important.
The initial (or ‘zeroth’) segment is always the BEGIN segment, and the last segment is usually
HARDEnd (or SOFTEnd to be discussed in Chapter VI). Intervening segments describe the
geometry and other properties of the acoustic engine. The number and order of data in
each segment is crucial. All units are MKS. Within each line, only the first number (e.g.,
“1.e5” or “100.”) or word (e.g., “helium” or “BEGIN”) is important; the rest of the line
can be used as a comment field, with, for example, the units or name of the variable whose
value appears. Whole-line comments can appear anywhere if they begin with “!” or with
20 or more blanks. Numbers can be in fixed or exponential format. Segment names are
all uppercase, and only the first five characters are interpreted (hence, the convention here
is to write segment names longer then 5 characters with trailing lower case letters, e.g.,
HARDEnd). All other words must have correct CASE and spelling.

The file shown below works just as well in the computer as the one shown above. How-
ever, with fewer comment annotations and only the minimal 5-character segment names,
it is harder for humans to follow; it also lacks restart information, so DeltaE might have
to prompt us for some more information before proceeding.

TITLE

BEGIN
1.e5
100.
300.
1000.

8

90.
1.0e-2
0
helium

ENDCA
0.01
helium

ISODU
0.01
354
5.00
helium

ENDCA
0.01
helium

HARDE
0
0.
helium

BEGIN sets the stage, in this case, with 1-bar room temperature helium gas being driven
at 100 Hz with a pressure amplitude of 1000 Pa and a volume velocity amplitude of 0.01
m3/s, 90o out of phase with the pressure.

Since BEGIN has no geometrical properties, an ENDCAp comes next to account for oscilla-
tory thermal losses at the first end of the resonator. An endcap is just a surface area giving
dissipation. In this example, because we are beginning with a nonzero volume velocity,
ENDCAp can be imagined as the face of the piston.

A lossy isothermal duct ISODUct comes next. Here, we have made the perimeter√
4π × area, to make this a circular duct.

The resonator ends with another ENDCAp for oscillatory pressure dissipation.

The input file then ends with the required HARDEnd segment. Its two lines are the real
and imaginary parts of the inverse of the end impedance. Since we have set these two equal
to zero, this is simply a hard end, with zero volume velocity.

Note that the special segments BEGIN and HARDEnd have no geometrical properties; so
ENDCAps are needed to put the thermal dissipation loss at the ends of the resonator.

Figures II.1 show the acoustician’s usual cartoon of a driven plane-wave resonator and
a pictorial representation of how we modeled this resonator for DeltaE. Throughout this

9

BEGIN (U≠0)
ENDCAP

ISODUCT

ENDCAP
HARDEND

Figure II.1: A plane-wave resonator; conventional and DeltaE representation.

tutorial we use generally conventional symbols to represent ordinary segments such as ducts,
horns, and heat exchangers.

This input file overdetermines the acoustic system because only some of the variables
listed can be specified independently. You can choose which of these variables DeltaE will
regard as fixed, which it will regard as initial guesses at solution values, and, occasionally,
which it will ignore.

Execute DeltaE and respond planwave to the prompt for an input file (on a MacIntosh,
double-click planwave.in, or open it using the “New Model” menu). You may also type
deltae planwave, or deltae planwave.in, to load the file directly. After your required
“carriage return to continue,” DeltaE will respond with:

Loading planwave.in . . .
Example 1: Plane-wave resonator
Ready.

DeltaE can accept either .in or .out files as input files. If you do not type the file suffix,
DeltaE looks first for a .out file. If it does not find it, it looks next for a .in file; if this
is not found, DeltaE reprompts for the file name. (On a MacIntosh, all of these steps are
replaced by a standard file selection dialog.)

On a keyboard menu system (e.g., PC-compatible, VMS, Unix, etc.), the main menu is
displayed next, giving the following options:

10

Main Menu:
r (r)un model p (p)lot another parameter
w (w)rite current model state P (P)lot status summary
n (n)ew model input file c (c)lear from vectors and plots
R (R)estore vectors C (C)lear|set all guesses&targets
E (E)xtras u (u)se in guess/target vector
d (d)isplay v (v)ector status summary
o (o)utput to printer m (m)odify parameter value
f (f)orm feed printer s (s)pecial modes editing
t (t)hermophysical properties D (D)OS command shell
e (e)xit DeltaE ? show this menu

MAIN: (rpwPncRCEudvomfstDe?)>

(On the MacIntosh, similar options are available on the menu bar for mouse selection.)

Now select “vector status summary” by typing ”v”:

Iteration Vectors Summary:
GUESS 0d 0e
name BEGIN:|p|@0 BEGIN:Ph(p)
value 1.00E+03 90.
units Pa deg

TARGET 4a 4b
name HARDE:R(1/Z HARDE:I(1/Z
units
value .00 .00

Potential TARGETS still available are:
Addr Seg:Par-Type Current Value

The GUESS vector, which has two components in this example, shows what DeltaE will
regard as solution variables: the magnitude and phase of the beginning pressure. Their
initial guesses are also shown. (This particular two-dimensional guess vector came from
the computer-generated table at the bottom of the input file. This table is explained in
Section III.B. If your input file has no such table, DeltaE can make a reasonable guess at
the guess variables you might want when you select (C)lear|set all guesses&targets

with no guesses defined yet.)

Basically, DeltaE integrates the wave equation from BEGIN to END. We insist that
DeltaE refine the two-dimensional GUESS vector to find a solution to this acoustics problem
by arriving at the HARDEnd with zero complex volume velocity. This is accomplished by
getting the ‘0’ values of the real and imaginary parts of the inverse of the impedance in the
HARDEnd segment into DeltaE’s two-dimensional TARGET vector, as shown in this vector
summary table.

11

The last two lines indicate unselected, still-available targets. These are the only remain-
ing output values for which DeltaE has a reserved input variable available to compare
with it. In this model, all such outputs are already in use.

Most of the thought required to successfully run DeltaE occurs while staring at this
vector status summary table, trying to figure out which of the variables are appropriate
guesses and targets. While the choice of variables is almost entirely arbitrary, as long
as the number of guesses equals the number of targets, some choices for the guess vector
would have little or no effect on the desired result. For example, allowing DeltaE to try to
achieve resonance in a given length by varying the areas of the endcaps would be futile. For
the examples in subsequent Chapters, the choice of good guess and target vector members
is not always as obvious as it is here.

For now, we will keep these vectors. “Run” the code (type ‘r’), and “(e)xit” from
DeltaE to the operating system to inspect its results, which DeltaE has put in two new
files, planewav.dat and planewav.out. planewav.dat looks like this:

-= Example 1: Plane-wave resonator =-
frequency= 100.000Hz mean pressure= 1.000E+05Pa

T(K) p(Pa) U(m^3/s) hdot(W) wdot(W)
300.0 2933. 2586.6 0.01000 0.00000 14.67 14.67

!------------------------------------ 1 ------------------------------------
ENDCAP First end
Heat extracted: 7.333E-02 Watts

300.0 2933. 2586.6 0.00997 -0.00002 14.59 14.59
!------------------------------------ 2 ------------------------------------
ISODUCT Duct
Duct wavvec =(0.623 , -6.207E-03) m^-1
Heat extracted: 14.5 Watts

300.0 -2931. -2588.9 -0.00003 -0.00002 0.07 0.07
!------------------------------------ 3 ------------------------------------
ENDCAP Second End
Heat extracted: 7.331E-02 Watts

300.0 -2931. -2588.9 0.00000 0.00000 0.00 0.00
!------------------------------------ 4 ------------------------------------
HARDEND Final
inverse impedance (rho a U/p A)=(-2.485E-08, 2.983E-08)

300.0 -2931. -2588.9 0.00000 0.00000 0.00 0.00

Examination of planewav.dat will show that the solution is <(p) = 2933 Pa, =(p) =
2587 Pa. Also shown are temperature, complex p1, and complex U1, work flow, and energy
flow at the beginning and end of each segment. You can see, for instance, that the driver
delivers 14.7 Watts of power to the resonator, that 0.07 Watts is absorbed on each end,
and that 14.5 Watts is absorbed by the duct. The work absorbed in isothermal segments
such as these is extracted as heat, e.g. by a water jacket in the real world.

12

The output model file, planewav.out, is shown below:

TITLE Example 1: Plane-wave resonator
!--------------------------------- 0 ---------------------------------
BEGIN Initial
1.0000E+05 a Mean P Pa 3911. A |p|@0 G(0d) P
100.0 b Freq. Hz 41.41 B Ph(p)0 G(0e) P
300.0 c T-beg K
3911. d |p|@0 Pa G
41.41 e Ph(p)0 deg G

1.0000E-02 f |U|@0 m^3/s
0.0000 g Ph(U)0 deg

helium Gas type
ideal Solid type

!--------------------------------- 1 ---------------------------------
ENDCAP First end
1.0000E-02 a Area m^2 3911. A |p| Pa

41.41 B Ph(p) deg
9.9719E-03 C |U| m^3/s

-0.1425 D Ph(U) deg
14.59 E Hdot W

helium Gas type 14.59 F Work W
ideal Solid type -7.3327E-02 G HeatIn W

!--------------------------------- 2 ---------------------------------
ISODUCT Duct
1.0000E-02 a Area m^2 3910. A |p| Pa
0.3540 b Perim m -138.5 B Ph(p) deg
5.000 c Length m 3.7491E-05 C |U| m^3/s

-138.5 D Ph(U) deg
7.3300E-02 E Hdot W

helium Gas type 7.3300E-02 F Work W
ideal Solid type -14.52 G HeatIn W

!--------------------------------- 3 ---------------------------------
ENDCAP Second End
1.0000E-02 a Area m^2 3910. A |p| Pa

-138.5 B Ph(p) deg
9.2828E-09 C |U| m^3/s
-8.743 D Ph(U) deg

-1.1617E-05 E Hdot W
helium Gas type -1.1617E-05 F Work W
ideal Solid type -7.3312E-02 G HeatIn W

!--------------------------------- 4 ---------------------------------
HARDEND Final
0.0000 a R(1/Z) = 4G? 3910. A |p| Pa
0.0000 b I(1/Z) = 4H? -138.5 B Ph(p) deg

9.2828E-09 C |U| m^3/s
-8.743 D Ph(U) deg

-1.1617E-05 E Hdot W
-1.1617E-05 F Work W
-2.4853E-08 G R(1/Z)

helium Gas type 2.9829E-08 H I(1/Z)
ideal Solid type 300.0 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!

13

INVARS 2 0 4 0 5
TARGS 2 4 1 4 2
SPECIALS 0

(Some digits of lesser significance in DeltaE output examples in this manual may vary
from the numbers which you get running your version of the code. This primarily due to
differences in floating point arithmetic hardware and software between different compilers
and computers, and the finite tolerance against which DeltaE measures the accuracy of
its results. This can be reduced from the default (see Chapters 5 and 6 for details) to force
iterations to continue until a greater degree of precision is achieved. For lower tolerance
levels, all significant digits in the finished output file will agree for all versions of the code
with relatively straightforward models.)

Examination of planewav.out will show that it is a slightly modified version of our
planewav.in: It includes the solution values for magnitude and phase of beginning pressure
(3911 Pa. 41.41o), replacing our original guesses (1000 Pa. 90o). DeltaE would have made
this file as it is even if we had used the bare-bones, unannotated version of the input file.
In *.out files, DeltaE numbers the segments and ‘letters’ the lines in each segment for
our convenience, and displays names and units for all variables. It adds the obscure table
at the end that reflects our choice of guess and target vectors. The format of DeltaE’s
.out file is acceptable as an input file, so using it as such can save the user a lot of work.

As a new example, we will find the resonance frequency f , which we guess is near 100 Hz.
We’ll use the same old planewav.in, so execute DeltaE again and select it. Display the
vector status summary again.

Iteration Vectors Summary:
GUESS 0d 0e
name BEGIN:|p|@0 BEGIN:Ph(p)
value 1.00E+03 90.
units Pa deg
TARGET 4a 4b
name HARDEND :R(1/Z HARDEND :I(1/Z
units
value .00 .00

Now we want f , |p| in segment BEGIN as the 2 components of the guess vector. We will
fix the phase of the beginning p1 at 0, because having p1 and U1 in phase at the driver is
the condition for resonance. So we want to change this table to look like this:

Iteration Vectors Summary:
GUESS 0b 0d
name BEGIN:Freq. BEGIN:|p|@0
value 1.00E+02 1.00E+03
units Hz Pa

14

TARGET 4a 4b
name HARDEND :R(1/Z HARDEND :I(1/Z
units
value .00 .00

We can make this change in guess vector by a “(c)lear” of 0e from the guess vector;
“(u)se” 0b instead; and “(m)odify” 0e to be zero degrees instead of 90o. (These vectors
happen to be identical to DeltaE’s default, so we could have generated this table by
selecting (C)lear|set twice—first to wipe out the old vectors, and then again to set the
defaults.) Now, “(r)un” the calculation. Inspect the results by using “(d)isplay” from
within DeltaE (or by escaping to the operating system, as you did before). You will find
that the resonance frequency is 100.9 Hz.

If you can’t remember the number-letter code for the variable you want when modifying
the vectors, “(d)isplay” all segments, or “(d)isplay” a selected segment number to see a list
of the variables. For example, “(d)isplay” segment 0 to find out which number-letter code
is for frequency:

INPUT # ParType Units Status OUTPUT # ParType Units Status
--------------------------------- 0 ---------------------------------
BEGIN Initialize things
1.000E+05 a Mean P Pa .000 A |p|@0 0d P
100. b Freq. Hz .000 B Ph(p)0 0e P
300. c T-beg K
1.000E+03 d |p|@0 Pa G
90.0 e Ph(p)0 deg G
1.000E-02 f |U|@0 m^3/s
000 g Ph(U)0 deg
helium Gas type
ideal Solid type

If you incorrectly remember a number-letter code and are stuck in a modification, you can
either type “return” repeatedly to accept existing values, or type “x” to escape. (If you’re
really stuck, control-C will escape from nearly anywhere.)

DeltaE can use any physically appropriate variables in the guess vector. You can
determine what temperature makes the model resonate at 100 Hz, by putting 0c in the
guess vector. (The answer is 290.7 Kelvin.) Or, by putting 2c in the guess vector, we could
have found out what length the model needs to be to resonant at 100 Hz at 300 K. An
advanced feature to be discussed in Chapter V allows use of the concentration in a binary
gas mixture to be used (as a member of the guess vector) so that we could determine the
argon concentration that would be required in the helium to make the resonance at 100 Hz.

15

B Plotting

DeltaE allows for plotting by automatically incrementing (or decrementing) one or two
independent variables, and tabulating these together with one or more output variables in
a file named something.plt. Users can then manipulate and/or plot that file with their
favorite graphics or spreadsheet software. We illustrate these features with a continuation
of the same example, a plane-wave resonator.

We use the same input file as before, planewav.in. Execute DeltaE and choose this
as input file. Check the vector status summary:

Iteration Vectors Summary:
GUESS 0d 0e
name BEGIN:|p|@0 BEGIN:Ph(p)
value 1.00E+03 90.
units Pa deg

TARGET 4a 4b
name HARDEND :R(1/Z HARDEND :I(1/Z
units
value .00 .00

Now inspect the Plotted parameter summary (type capital “P”):

Dependent Variables (outputs):
PLOTS 0A 0B
name BEGIN:|p|@0 BEGIN:Ph(p)
units Pa deg

Keep these parameters as the dependent variables to be plotted (they are copies of
the guesses). To set up the independent variables, select “plot another variable.” We will
make a two-dimensional plot, letting f go from 80 Hz to 339.5 Hz in 1.5-Hz steps in
the inner loop, and using two values of mean pressure—1000 Pa and 100,000 Pa—in the
outer loop. DeltaE prompts for these entries in the “range” selection. As before, if you
can’t remember the segment-number and line-letter codes for frequency and mean pressure,
“(d)isplay” segment 0 to find out. After entering these values, check the Plotted parameter
summary again:

Dependent Variables (outputs):
PLOTS 0A 0B
name BEGIN:|p|@0 BEGIN:Ph(p)
units Pa deg

Indpendent Variables (inputs):
Outer loop: 0a BEGIN:Mean Beg= 1.00E+03 End= 1.00E+05 Step= 9.90E+04
Inner Loop: 0b BEGIN:Freq. Beg= 80. End= 3.40E+02 Step= 1.5

16

Now do a (r)un. DeltaE will step through the variables selected (taking a minute or
two on a 286). When it has finished, exit to the operating system, and find two new files.
The file planewav.des gives headings of what has been tabulated:

BEGIN:Mean BEGIN:Freq. BEGIN:|p|@0 BEGIN:Ph(p)
Pa Hz Pa deg
0a 0b 0A 0B

and planewav.plt is the table of values:

* 1000.0 80.00 1000.0 90.00
* 1000.0 81.50 1000.0 90.00
* 1000.0 83.00 1000.0 90.00
* 1000.0 84.50 1000.0 90.00
* 1000.0 86.00 1000.0 90.00

1000.0 87.50 5.095 23.89
1000.0 89.00 5.398 16.33
1000.0 90.50 5.598 8.033
1000.0 92.00 5.656 -0.6461

...

1.0000E+05 87.50 -370.7 265.4
1.0000E+05 86.00 -328.6 265.8
1.0000E+05 84.50 -293.7 266.0
1.0000E+05 83.00 -264.1 266.3
1.0000E+05 81.50 -238.6 266.4
1.0000E+05 80.00 -216.4 266.6

Notice that the first few lines of planewav.plt begin with “∗” and their values do not
make much sense. The asterisk signifies that DeltaE did not converge to a solution it
judged accurate, so it suspects that these data may be invalid. (We could have avoided this
by giving DeltaE a better initial guess for |p1| and phase(p1), but we chose instead to let
DeltaE seek a solution.) Warning messages appeared on the screen as each of these points
was calculated. Once it converged (at 87.5 Hz) DeltaE was in no danger of getting lost
again because it always uses its previous solution as its initial guess, and with such small
frequency increments the previous solution is an excellent guess. Notice also, that DeltaE
alternates the order in which it calculates the points of the inner loop (frequency, here).
This process is motivated by the quality of initial guesses; ‘zig-zagging’ thus, DeltaE must
spend only a brief time searching for the start point of the inner loop each time it begins
a new cycle.

We brought this file into a spreadsheet/graphics program to fix it up for plotting. We
removed the asterisked lines; we also removed minus signs from |p1|whenever they occurred,
adding 180o to phase(p1) in those cases to improve the looks of the the graphs. We also
plotted |p1|/pm (instead of just |p1|). The resulting plots are shown in Figs. II.2. (The
lower quality-factor curves are for the lower mean pressure, of course.)

17

Figure II.2: Pressure and phase vs frequency for the plane-wave resonator.

18

C Further Simple Features

Here we describe some additional DeltaE features which are relevant to purely acoustic
(not thermoacoustic) apparatus. A list of the most commonly used purely acoustic segment
types (including those introduced previously) is given below. More detailed descriptions of
each are given in Chapter VI.

TITLE Required at the top; comment field is retained in all .DAT and .OUT files.

BEGIN Required immediately after TITLE. This is the “zeroth” segment. It defines global
parameters such as mean pressure and frequency, and initial conditions for p1 and U1.

ENDCAp A surface area with oscillatory-pressure loss in its thermal penetration depth. Usu-
ally used at ends of ducts.

ISODUct An isothermal duct, with losses. Separate entry of area and perimeter accommo-
dates ducts of any cross-sectional shape.

ISOCOne A cone to adapt between ducts of different sizes. Uses lossy Webster horn equa-
tion.

COMPLiance A compliance. With oscillatory-pressure losses on surface.

IMPEDance A lumped-parameter series impedance.

IDUCEr and VDUCEr Current-driven and voltage-driven transducers, with parameters in-
dependent of frequency.

ISPEAker and VSPEAker Current-driven and voltage-driven electrodynamic transducers,
parameterized by mass, B-L product, etc., so that impedance coefficients depend on
frequency.

IEDUCer and VEDUCer, IESPEaker and VESPEaker The four transducers above are in branched
configurations, where pressure is unchanged by the transducer. These Enclosed ver-
sions are their series counterparts, where volumetric velocity remains constant across
the segment.

BRANCh A frequency-independent side-branch impedance.

OPNBRanch A frequency-dependent side-branch impedance with the characteristic radiation
impedance of a duct opening into an infinite or semi-infinite space.

HARDEnd One of the allowed final segments. Used to set U1 = 0 through use of the inverse
of the acoustic impedance in the TARGET vector.

19

SOFTEND The other allowed final segment. Used to set p1= 0 through use of the acoustic
impedance in the TARGET vector. Very useful for defining mirror-image planes in
symmetric apparatus with pressure nodes at center of symmetry.

Each segment must have a gas type and a solid type (even segments that don’t actually
use such information, such as BRANCh). At present, DeltaE supports air, helium, neon,
He-Xe, He-Ar, and He-Ne mixtures (see Chapter VI), hydrogen, deuterium, nitrogen, car-
bon dioxide, natural-gas combustion products (i.e., chimney exhaust), liquid sodium, and
eutectic liquid NaK as gases. Solids include Kapton, mylar, stainless steel, molybdenum,
tungsten, copper, nickel, and ideal. An ideal solid is one that has infinite heat capacity,
density, and thermal conductivity. If no solid type is given in the input file, DeltaE will
assign the ideal solid type. There is also a mechanism for specifying additional, user-defined
fluids and solids; details are given in Chapter VI.

The sameas nl feature allows reference to a value (either a number or a gas or solid
type) in another segment. This helps prevent typographical errors in the input file, and is
especially useful in linking dimensions of adjacent segments which you might want to vary
all together while plotting, such as areas of all segments when increasing the size of the
apparatus. You can give just the segment number, if the parameter letters are the same
(e.g., “sameas 0” is often the gas type in all segments after the zeroth segment), or segment
number and line letter (e.g., “sameas 3a”). If you try to use sameas for two different types
of variables—making a length the same as an area, for example—DeltaE will give an error
message and abort. The following example is for a closed resonator composed of two ducts
joined by a cone:

TITLE illustrating use of sameas

BEGIN Initial 0
1.380E+06 a Mean P Pa
132. b Freq. Hz
586. c T-beg K

6.639E+04 d |p|@0 Pa
.000 e Ph(p)0 deg
.000 f |V|@0 m^3/s
.000 g Ph(V)0 deg

helium Gas type

ENDCAP Hot End 1
sameas 2a a Area m
sameas 0 Gas type

ISODUCT Hot Duct 2
1.292e-2 a Area m

.403 b Perim m
1.0 c Length m
sameas 0 Gas type

ISOCONE adapter between ducts

20

sameas 2a a AreaI m^2
sameas 2b b PerimI m

.100 c Length m
sameas 4a d AreaF m^2
sameas 4b e PerimF m
sameas 0

ISODUCT Cold Duct 4
0.323e-2 a Area m^2
0.2015 b Perim m
1.0 c Length m
sameas 0

ENDCAP Cold End 5
sameas 4a a Area m^2
sameas 0

HARDEND 6
.000 a R(1/Z)
.000 b I(1/Z)

sameas 0

When you access a parameter specified by sameas using (m)odify, or (p)lot to make
it an independent plot variable, or (u)se it in a guess vector, the sameas relationship is
severed and the parameter is given its current actual value. This is required because the
value at this point will be changed (either by you, or by DeltaE). But if a variable that
is the root of several sameas references is caused to change in any of these three ways, all
sameas references to this root within the model will change with it.

21

22

Chapter III

Thermoacoustics

The examples given in the previous Chapter were relatively simple cases of linear acoustics.
In this Chapter, we introduce the full thermoacoustic computing power of DeltaE. After
discussing the principles and assumptions that are built into the computation, we present
example calculations.

A Principles of Computations

DeltaE deals with one-dimensional strings of acoustic and thermoacoustic elements (see
Chapter V for branches), so the one-dimensional wave equation is of the greatest impor-
tance. We always assume a time dependence of eiωt, so the wave equation is a second-order
differential equation for the complex pressure amplitude p1(x) :

p1 +
a2

ω2

d2p1

dx2
= 0.

(III.1)

x

23

More complexity is added, as needed, for given geometries. For example, in a duct, the
wave equation is

(1 +
1− i

2

Π

A

γ − 1

1 + εs
δκ)p1 +

a2

ω2
(1− 1 − i

2

Π

A
δν)

d2p1

dx2
= 0, (III.2)

where A is the cross-sectional area of the duct, Π is its perimeter, and εs is a correction
for thermal properties of the duct wall that is usually negligible. In a shallow lossy horn,
where A and Π themselves depend on x, the wave equation is

[
1 +

1− i

2

Π

A

γ − 1

1 + εs
δκ

]
p1 +

a2

ω2

1

A

d

dx

([
1−

1− i

2

Π

A
δν

]
A
dp1

dx

)
= 0. (III.3)

In a stack, we use Rott’s wave equation:

(1 +
(γ − 1)fκ

1 + εs
)p1 +

ρma
2

ω2

d

dx
(
1− fν
ρm

dp1

dx
)− β

a2

ω2

(fκ − fν)

(1 − σ)(1 + εs)

dTm
dx

dp1

dx
= 0. (III.4)

In DeltaE, the computation uses the wave equation that is appropriate for each seg-
ment. Within each segment, wave propagation is controlled by local parameters such as
area and perimeter. Although DeltaE uses analytic solutions to the wave equation for
some of the simplest segment types, it often must integrate the wave equation numeri-
cally, so it is generally correct to imagine DeltaE beginning at the BEGIN segment and
numerically integrating the wave equation through each segment, in turn, to the HARDEnd

or SOFTEnd, using local parameters, such as area and perimeter, as it goes.

It is sometimes easier to think of the second-order wave equation as two coupled first-
order equations in pressure p1 and volume velocity U1 :

U1 =
iA

ωρ

dp1

dx
;

p1 =
iρa2

ωA

dU1

dx
. (III.5)

From this point of view it is easier to understand DeltaE’s use of continuity of p1 and U1

to pass from the end of one segment to the beginning of the next. This point of view is
taken in the review article, “Thermoacoustic engines and refrigerators” by G.W. Swift, to
be published in the Encyclopedia of Applied Physics.

Either way, however, it is clear that the solution p1(x), U1(x) is only determined uniquely
if four real boundary conditions are imposed, because the governing equation is second
order in a complex variable. This is true whether considering a single segment or a one-
dimensional string of segments with each joined to its neighbor(s) by continuity of p1 and
U1. If all four boundary conditions are given at one end of the apparatus (i.e., if we know

24

the complex p1 and complex U1 at the BEGIN segment) then the integration is utterly
straightforward. But usually some of the boundary conditions are given elsewhere. For
example, in the plane-wave resonator in the previous Chapter, the boundary conditions
were U1 = (0.01, 0) m/s at the BEGIN segment, and U1 = (0, 0) at the HARDEnd. In such
conditions DeltaE uses a shooting method,1 by guessing any unknowns among the four
numbers defining p1 and U1 at the BEGIN segment, integrating to the HARDEnd, comparing
the results with the boundary conditions imposed at the HARDEnd, and adjusting its guesses
until it comes out right.

The boundary conditions imposed at the HARDEnd are in DeltaE’s TARGET vector. The
unknown conditions at the BEGINning, which DeltaE is supposed to find, are in DeltaE’s
GUESS vector. The number of elements in the TARGET vector must equal the number of
elements in the GUESS vector; otherwise the system is over- or under-determined.

One of DeltaE’s most powerful features is that the elements of the GUESS vector are
not limited to the conventional choices consisting of real and imaginary parts of p1 and
U1 at the BEGINning. Any variables that have an effect on the TARGET vector variables
can be used. This enables DeltaE to calculate resonance frequencies, geometrical dimen-
sions, temperatures, or even concentration in binary gas mixtures in order to satisfy given
boundary conditions.

To add thermoacoustic computation ability to this linear acoustic picture, only one
more equation is required, i.e., that for the temperature Tm(x). As for p1(x) and U1(x), the
equation for Tm(x) depends on the type of segment, and continuity of Tm(x) is imposed at
the junctions between segments. Most segments, such as isothermal ducts and cones, obey
simply dTm/dx = 0. Stacks have a more complicated, but still only first-order, differential
equation for Tm(x):

Ḣ2 =
Afluid

2ωρm
=

[
dp̃1

dx
p1(1− f̃ν −

Tmβ(fκ − f̃ν)

(1 + εs)(1 + σ)
)

]

+
Afluidcp

2ω3ρm(1− σ)

dTm
dx

dp1

dx

dp̃1

dx
=

[
f̃ν +

(fκ − f̃ν)(1 + εsfν/fκ)

(1 + εs)(1 + σ)

]

− (AfluidK + AsolidKs)
dTm
dx

(III.6)

So, for thermoacoustic calculations, DeltaE integrates from BEGINning to HARDEnd, with
respect to five real variables: real Tm(x), complex p1(x), and complex U1(x). It uses

1Precisely speaking, DeltaE forms a system of nonlinear equations from the model using the targets

that the user selects and manipulates the guesses to drive the differences between the targets and results to

zero. The routine incorporated in the code is called DNSQ, and it is part of the SLATEC Common Mathemat-

ical Library, which is freely available through the internet software repository at “http://www.netlib.org”.

The algorithm used is a modification of the Powell hybrid method.

25

Figure III.1: 5-inch engine.

the appropriate wave equation and temperature equation for each segment. Within each
segment, wave propagation is controlled by local parameters, such as area and perimeter,
and by global parameters, such as frequency and mean pressure. Spatial evolution of
temperature profile is also controlled by such local parameters, which include energy flow.
(Energy flow includes both longitudinal conduction in the solid elements of an element, and
enthalpy flow. Enthalpy flow is a conceptually difficult parameter because it depends on
the heat flows into adjacent heat exchangers and on work flowing along the apparatus. It
is therefore like the frequency in a resonant system in that it is a parameter that controls
wave propagation in a segment but whose value is determined elsewhere.)

B The 5-Inch Engine

The 5-inch engine is described in detail in J. Acoust. Soc. Am. 92, 1551 (1992). The device
described there is used to illustrate the fully thermoacoustic capabilities of DeltaE here;
we reproduce some of the figures in that paper.

The apparatus is shown in FIg. III.1. Beginning with the input file (5inch.in, in the
examples directory) to illustrate stack and heat exchanger segment types:

TITLE Five-Inch Thermoacoustic Engine

BEGIN Initial
13.8e5 (Pa) mean pressure
100. (Hz) freq
500. Starting Temp
8.e4 Mag(Pa) acoustic pressure @x=0
0. Phase (deg) acoustic pressure @x=0
0. Mag(vdot) vol. veloc @x=0
0. Phase (deg) vol. veloc @x=0

26

helium gas type

ENDCAP Hot End
0.01292 (m^2) area
sameas 0 gas type

ISODUCT Hot Duct
sameas 1 (m^2) total area
0.403 (m) perim
0.279 (m) length
sameas 0 gas type

HXFRST Hot HX
sameas 1 (m^2) total area
0.393 gas area/total area
0.060 (m) length
0.483e-3 (m) y0 (this is half the gap)
2210.20 (W) heat
550. (K) temperature
sameas 0 gas type

STKCIRC Honeycomb Stack
sameas 1 (m^2) total area
0.81 gas area/total area
0.279 (m) length
0.50e-3 (m) radius of each ’circular’ pore
0.05e-3 (m) L:half of sht thcknss
sameas 0 gas type
stainless stack material

HXLAST Cold HX
0.01267 (m^2) total area
0.486 gas area/total area
0.0508 (m) length
0.406e-3 (m) y0
0.0 (W) heat
303. (K) temperature
sameas 0 gas type

ISODUCT Cold Duct
sameas 5 (m^2) total area
0.399 (m) perim
3.654 (m) length
sameas 0 gas type

ENDCAP Cold End
sameas 5 (m^2) area
sameas 0 gas type

HARDEND
0. Re(zinv)
0. Re(zinv)
sameas 0 gas type

27

Of the three types of heat exchanger segments, only two are shown here. HXFRSt comes
before a stack; HXLASt comes after a stack; HXMIDl comes between stacks. They differ in
whether the heat flow is considered to be an input (possibly a guess) or a result.

All HX’s are assumed to have parallel-plate geometry, with plate spacing 2yo. Other
geometry is given in straightforward format. Wave propagation through heat exchangers
is computed using a complex wavevector including both viscous and thermal dissipation in
this geometry.

One additional feature of HX’s is heat flow. Positive heat flows into the apparatus.
In HXFRSt and HXMIDl, the heat flow determines the change in energy flux in the heat
exchanger. Thus, in these cases heat flow can be either be fixed (and optionally, an inde-
pendent plot variable) or it can be a member of the guess vector . In HXLASt, the change
in energy determines the heat flow, so the heat can be a result or target (and optionally
a dependent plot variable). This example uses the hot heat exchanger’s heat flow as the
independent plot variable and the cold heat exchanger’s heat flow as a simple result that
is largely ignored here.

A second additional feature of the HX’s is the temperature difference between the mean-
gas temperature and the heat exchanger metal temperature, proportional to the heat flow.
Its dependence on the geometry of the heat exchanger is given in Chapter VI. [This temper-
ature difference can presently be computed only within an accuracy of about a factor of 2,
even in the acoustic approximation; nevertheless, it is included, to prevent naive users from
being led to designs with heat exchangers of negligible surface area that have negligible
losses and that would appear to have no disadvantages if the temperature difference were
not included. Future revisions of DeltaE, hopefully, will have an accurate calculation
algorithm for this effect. Meanwhile, however, if you prefer not to use this feature, use the
gas mean temperature instead of the metal temperature by using a FREETarget (see Sec-
tion VI.A) to access the temperature in the adjacent stack segment (parameter G or H).]
Metal temperature can be a target or a result. In this example, the cold heat exchanger’s
temperature is used as a target and the hot heat exchanger’s temperature is used as a result
and plotted.

Seven types of stacks are allowed: STKSLab for parallel-plate geometry, STKCIrc for
circular pores, STKREct for rectangular and square pores, STKPIns for pin-array stacks, and
STKDUcts for boundary-layer-approximation stacks (with all dimensions much greater than
thermal and viscous penetration depths). STKSCreen and STKPOwerlaw for regenerators
for Stirling systems will be introduced in Chapter IV. The geometry for each type is given
as shown in Chapter VI below. Evolution of Tm, p1, and U1 are computed as described in:
J. Acoust. Soc. Am. 84, 1145 (1988), J. Acoust. Soc. Am. 92, 1551 (1992),
J. Acoust. Soc. Am. 90, 3228 (1991), and J. Acoust. Soc. Am. 94, 941 (1993).

28

You can execute DeltaE using the input file above and use (C)lear|set to ask for
default targets:

No vectors defined...do you want enable a default
set of targets&guesses for this model? (y/n) y
Is this a prime-mover or a heat pump(p|h)? p

We selected ‘p’ because this device is a prime mover. Examining the vector summary, we
find:

Iteration Vectors Summary:
GUESS 0b 0c 0d
name BEGIN:Freq. BEGIN:T-beg BEGIN:|p|@0
value 1.00E+02 5.00E+02 8.00E+04
units Hz K Pa

TARGET 5f 8a 8b
name HXLAS:Est-T HARDE:R(1/Z HARDE:I(1/Z
units K
value 3.03E+02 .00 .00

Potential TARGETS still available are:
Addr Seg:Par-Type Current Value
3f HXFRST:Est-T = 550.0 K
5e HXLAST:HeatIn= .0000 W

DeltaE has made good default choices for guess and target vector elements. The
default is a three-dimensional search, with end impedance and cold heat-exchanger tem-
perature as targets.

Other choices could be made for this table. For instance, the cold-duct length could be
substituted for the frequency in the guess vector. A fourth component, such as the hot heat-
exchanger temperature 3f could be added to the target vector and, simultaneously, the hot
heat-exchanger heat 3e could be added to the guess vector. For now, however, these vectors
will be left as they are, since they reflect the point of view adopted in J. Acoust. Soc. Am. 92,
1551 (1992).

If you run this case, you will get the following .dat file:

-= Five-Inch Thermoacoustic Engine =-
frequency= 121.023Hz mean pressure= 1.380E+06Pa

T(K) p(Pa) U(m^3/s) hdot(W) wdot(W)
557.7 73450. 0.0 0.00000 0.00000 0.00 0.00

!------------------------------------ 1 ------------------------------------
ENDCAP Hot End
Heat extracted: 1.22 Watts

557.7 73450. 0.0 -0.00003 0.00000 -1.22 -1.22

29

!------------------------------------ 2 ------------------------------------
ISODUCT Hot Duct
Duct wavvec =(0.549 , -2.010E-03) m^-1
Heat extracted: 10.5 Watts

557.7 72589. 6.9 -0.00032 -0.08748 -11.76 -11.76
!------------------------------------ 3 ------------------------------------
HXFRST Hot HX
Heat exch wavvec =(0.669 , -0.194) m^-1
Heat = 2210.200 (W) metal temp= 563.295 Kelvin

557.7 71424. 482.4 -0.00202 -0.09651 2198.44 -95.37
!------------------------------------ 4 ------------------------------------
STKCIRC Honey Stack

306.4 65548. 3147.5 0.01282 -0.15903 2198.44 169.94
!------------------------------------ 5 ------------------------------------
HXLAST Cold HX
Heat exch wavvec =(0.858 , -0.162) m^-1
Heat = -2113.895 (W) metal temp= 303.000 Kelvin

306.4 62913. 3568.5 0.01215 -0.16675 84.55 84.55
!------------------------------------ 6 ------------------------------------
ISODUCT Cold Duct
Duct wavvec =(0.740 , -1.647E-03) m^-1
Heat extracted: 83.9 Watts

306.4 -69442. -4136.6 -0.00002 0.00000 0.64 0.64
!------------------------------------ 7 ------------------------------------
ENDCAP Cold End
Heat extracted: 0.642 Watts

306.4 -69442. -4136.6 0.00000 0.00000 0.00 0.00
!------------------------------------ 8 ------------------------------------
HARDEND
inverse impedance (rho a U/p A)=(-3.410E-12, 2.163E-10)

306.4 -69442. -4136.6 0.00000 0.00000 0.00 0.00

This run will also produce the following .out file:

TITLE Five-Inch Thermoacoustic Engine
!--------------------------------- 0 ---------------------------------
BEGIN Initial
1.3800E+06 a Mean P Pa 121.0 A Freq. G(0b) P
121.0 b Freq. Hz G 557.7 B T-beg G(0c) P
557.7 c T-beg K G 7.3450E+04 C |p|@0 G(0d) P

7.3450E+04 d |p|@0 Pa G
0.0000 e Ph(p)0 deg
0.0000 f |U|@0 m^3/s
0.0000 g Ph(U)0 deg

helium Gas type
ideal Solid type

!--------------------------------- 1 ---------------------------------
ENDCAP Hot End
1.2920E-02 a Area m^2 7.3450E+04 A |p| Pa

0.0000 B Ph(p) deg
3.3241E-05 C |U| m^3/s
180.0 D Ph(U) deg

-1.221 E Hdot W
sameas 0 Gas type -1.221 F Work W
ideal Solid type -1.221 G HeatIn W

30

!--------------------------------- 2 ---------------------------------
ISODUCT Hot Duct
sameas 1a a Area m^2 7.2589E+04 A |p| Pa
0.4030 b Perim m 5.4761E-03 B Ph(p) deg
0.2790 c Length m 8.7480E-02 C |U| m^3/s

-90.21 D Ph(U) deg
-11.76 E Hdot W

sameas 0 Gas type -11.76 F Work W
ideal Solid type -10.54 G HeatIn W

!--------------------------------- 3 ---------------------------------
HXFRST Hot HX
sameas 1a a Area m^2 7.1425E+04 A |p| Pa
0.3930 b GasA/A 0.3869 B Ph(p) deg
6.0000E-02 c Length m 9.6528E-02 C |U| m^3/s
4.8300E-04 d y0 m -91.20 D Ph(U) deg
2210. e HeatIn W 2198. E Hdot W
550.0 f Est-T K (t) -95.37 F Work W

sameas 0 Gas type 2210. G Heat W
ideal Solid type 563.3 H MetalT K

!--------------------------------- 4 ---------------------------------
STKCIRC Honey Stack
sameas 1a a Area m^2 6.5624E+04 A |p| Pa
0.8100 b GasA/A 2.749 B Ph(p) deg
0.2790 c Length m 0.1595 C |U| m^3/s
5.0000E-04 d radius m -85.39 D Ph(U) deg
5.0000E-05 e Lplate m 2198. E Hdot W

169.9 F Work W
557.7 G T-beg K

helium Gas type 306.4 H T-end K
stainless Solid type 265.3 I StkWrk W

!--------------------------------- 5 ---------------------------------
HXLAST Cold HX
1.2670E-02 a Area m^2 6.3014E+04 A |p| Pa
0.4860 b GasA/A 3.246 B Ph(p) deg
5.0800E-02 c Length m 0.1672 C |U| m^3/s
4.0600E-04 d y0 m -85.83 D Ph(U) deg
0.0000 e HeatIn W (t) 84.55 E Hdot W
303.0 f Est-T K = 5H? 84.55 F Work W

helium Gas type -2114. G Heat W
ideal Solid type 303.0 H MetalT K

!--------------------------------- 6 ---------------------------------
ISODUCT Cold Duct
sameas 5a a Area m^2 6.9565E+04 A |p| Pa
0.3990 b Perim m -176.6 B Ph(p) deg
3.654 c Length m 1.8467E-05 C |U| m^3/s

-176.6 D Ph(U) deg
0.6423 E Hdot W

helium Gas type 0.6423 F Work W
ideal Solid type -83.90 G HeatIn W

!--------------------------------- 7 ---------------------------------
ENDCAP Cold End
sameas 5a a Area m^2 6.9565E+04 A |p| Pa

-176.6 B Ph(p) deg
8.5383E-11 C |U| m^3/s
-85.69 D Ph(U) deg

-4.6811E-08 E Hdot W
helium Gas type -4.6811E-08 F Work W
ideal Solid type -0.6423 G HeatIn W

31

!--------------------------------- 8 ---------------------------------
HARDEND
0.0000 a R(1/Z) = 8G? 6.9565E+04 A |p| Pa
0.0000 b I(1/Z) = 8H? -176.6 B Ph(p) deg

8.5383E-11 C |U| m^3/s
-85.69 D Ph(U) deg

-4.6811E-08 E Hdot W
-4.6811E-08 F Work W
-3.4102E-12 G R(1/Z)

helium Gas type 2.1633E-10 H I(1/Z)
ideal Solid type 306.4 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this data only if you really know your model!
INVARS 3 0 2 0 3 0 4
TARGS 3 5 6 8 1 8 2
SPECIALS 0

The .dat file is a segment-by-segment listing of results of the run. The three members
of the guess vector (f , Tbegin, and |p1|begin), which we had guessed would be near 100 Hz,
500 Kelvin, and 80,000 Pa, have turned out to be 121.020 Hz, 557.6 Kelvin, and 73,419 Pa;
these values appear in the first few lines of 5inch.dat. Temperature; real and imaginary
pressure and volume velocity; energy flow; and work flow are listed at each transition
between segments. Be sure the complex volume velocity at HARDEnd is zero, as required by
two members of the target vector.

Some segments have additional information listed. Ducts and heat exchangers list
wavevector (mostly real in the wide-open ducts; with large imaginary components in the
much more lossy heat exchangers). Heat exchangers also list heat flow and metal tem-
perature. Note that the metal is hotter than the gas in the hot heat exchanger, where
the (positive) heat flows from metal to gas, and that the metal is cooler than the gas in
the cold heat exchanger, where the (negative) heat flow is from gas to metal. Note also
that DeltaE successfully hit the target metal temperature of 303 Kelvin in the cold heat
exchanger.

Now examine the energy and work flow columns in 5inch.dat. The hot endcap absorbs
1.2 W of work, and the hot duct absorbs 11.7− 1.2 = 10.5 W of work. The minus signs on
energy and work indicate energy flows ‘up’ the apparatus, toward the BEGINning.

The hot heat exchanger absorbs 95.28 − 11.75 = 83.53 W of work. Because 2210.2 W
of heat are added through it, the energy flow must increase by that amount; hence, the
energy flow changes from -11.7 W to 2198.5 W in the hot heat exchanger.

The energy flow remains constant at 2198.5 W through the stack, which produces
169.81 − (−95.28) = 265.09 W of work. Part of that work (95.28 W) flows up to supply

32

work to the hot parts of the engine; the rest (169.81 W) flows down to supply work to the
cold parts of the engine.

An examination of the cold heat exchanger listing parallels that of the hot heat ex-
changer, and the cold duct and endcap parallel the hot ones.

Some of this information is also available in the .out file, where it appears in a format
that can be used as an input file for subsequent runs. The .out file is also a segment-
by-segment listing, with a restart table appended. In the segment-by segment listing, the
variables on the left are used in the input file. They include anything that can be used as
a guess or target. Anything that was used as guess or independent plot variable contains
its most recent value instead of the initial value supplied be the .in file. The variables on
the right can be used as dependent variables in plots and can be compared to targets. We
will encounter examples of each as we examine typical segments of this file.

The left portion of the BEGIN segment is in the .in-file format. Freq, T-beg, and
|p|@0 are marked with “G” signifying their membership in the guess vector. They also
appear in the right column, marked with “P”, signifying their status as default dependent
plot variables. The right column of the BEGIN segment is a special case: it contains a copy
of each guess vector variable with the values that were used in DeltaE’s last iteration.
To identify their origin, the units for each of these ‘output’ variables are replaced by the
address (e.g., “0b”) that they were copied from. This occurs only in the BEGIN segment.

Now examine the cold heat-exchanger segment. Again, the left column is the familiar
input-file format. HeatIn is marked “(t)” to indicate that it is a potential target variable,
though we did not use it as such. Est-T is marked “=5H?” to show that it is indeed a
target variable, to be compared to the computed MetalT variable that appears in the right
column. For all input (left side) parameters that DeltaE recognizes as potential targets,
it knows the location of the appropriate result to compare with the target value. (The set
of freetarget segments, each of which introduces a new target variable, allows the result
to which it is compared to be flexibly defined. See Section V.A for an introduction to
freetargets.)

HARDEnd has two more examples of the markers that indicate target variables. There,
the target values are 0.0, and DeltaE’s solution has reached 1.408e-6 and 5.303e-5, which
it judges to be close enough to zero.

The restart table at the end is translated thus:

INVARS 3 0 2 0 3 0 4 means 3 variables: 0b, 0c, 0d
TARGS 3 5 6 8 1 8 2 means 3 variables: 5f, 8a, 8b

33

This is an encoded version of the same information that is indicated by the guess and target
flags, explained above, and is visible in the vector status summary table. Here, DeltaE
would find this information automatically when using this .out file as a new input file.

To plot some results for this 5-inch engine case, execute DeltaE with this file again
and modify the Plot summary to be

Dependent Variables (outputs):
PLOTS 0A 0B 0C 3H 8A
name BEGIN:Freq. BEGIN:T-beg BEGIN:|p|@0 HXFRS:Metal HARDE:|p|
units Hz K Pa K Pa

Indpendent Variables (inputs):
Outer loop: 3e HXFRS:HeatI Beg= 9.50E+02 End= 50. Step= -33.

Accomplishing this process required that we “plot another parameter” three times to add
3H and 8A to the dependent variable list and establish 3e as independent variable and set
its initial, final, and step values. (T-beg and |p|@0 are of minor interest now, but could
not be deleted from the list of plot variables because members of the guess vector appear
here by default.)

Next, we modified mean pressure to be 19.2 bar, and ran the code. When completed,
we modified mean pressure to 13.8 bar, and ran it again, appending the new results to the
.plt file. Three more runs with mean pressures of 9.6, 6.9, and 5.2 bar completed the data
set. We exited from DeltaE, and checked to see that it has created the .des and .plt

files:

HXFRS:HeatI BEGIN:Freq. BEGIN:T-beg BEGIN:|p|@0 HXFRS:Metal HARDE:|p|
W Hz K Pa K Pa

3e 0A 0B 0C 3H 8A

950.0 120.6 562.7 5.9741E+04 566.2 5.6827E+04
916.7 120.5 562.6 5.8637E+04 566.1 5.5777E+04
883.4 120.5 562.6 5.7511E+04 566.0 5.4706E+04
850.1 120.5 562.5 5.6362E+04 565.9 5.3614E+04
816.8 120.5 562.5 5.5190E+04 565.7 5.2499E+04

...

We read this .plt file into a spreadsheet/graphics program for minimal massaging: con-
vert pressure amplitude at the cold end from Pascals to bar, and then square that num-
ber; subtract 303 Kelvin from Th, and add the heat leak to the room to Qh. Plotting
these results then yields the curves shown in Fig. III.2, resembling Figs. 5, 6, and 7 in
J. Acoust. Soc. Am. 92, 1551 (1992). These curves differ slightly from those in the arti-
cle, because of the inclusion of the small gas-to-metal temperature differences in the heat
exchangers.

34

Figure III.2: 5-inch engine results. Lines are DeltaE results; points are from experimental

data.

35

More detailed comparison between DeltaE computations and measurements with this
apparatus can be found in J. Acoust. Soc. Am. 95, 1405 (1994).

C Hofler’s Thermoacoustic Refrigerator

Tom Hofler’s thermoacoustic refrigerator was described in detail in his Ph. D. thesis “Ther-
moacoustic Refrigerator Design and Performance,” UC San Diego, Physics Department
(1986). The work was also summarized in the proceedings of the 5th International Cry-
ocoolers Conference, 1988, Monterey CA, p. 93. We use this case to further illustrate
capabilities of DeltaE, generating curves similar to Figs. 16 and 17 in Hofler’s thesis
(Figs. 5 and 6 in the Cryocoolers proceedings).

The apparatus is shown in Fig. III.3:

Figure III.3: Hofler’s thermoacoustic refrigerator.

We began with an input file (hofler.in, in the examples directory) whose geometry is
that of Hofler’s ‘long’ apparatus:

TITLE Hofler’s 1986 thermoacoustic refrigerator

! Geometry comes from Hofler thesis, pages 28, 64, 68, 115, 130, 133.

BEGIN
1.0e6 Pa Mean P
500. Hz Freq.
300. K T-beg
3.0e4 Pa |p|@0
0.0 deg Ph(p)0

36

5.0e-4 m3/s |U|@0
0.000 deg Ph(U)0
helium Gas

ENDCAP driver end 1
1.134e-3 m2 Area
SAMEAS 0 Gas

ISODUCT room temp duct 2
SAMEAS 1 Area
0.119 m Perim
4.26e-2 m Length
SAMEAS 0 Gas

HXFRST room temp heat exchanger 3
SAMEAS 1 Area
0.600 GasA/A
6.35e-3 m Length
1.9e-4 m y0
-20.0 W HeatIn
300. K Est-T (I hope this was the experimental value.)
SAMEAS 0 Gas

STKSLAB Stack 4
SAMEAS 1 Area
0.724 GasA/A
7.85e-2 m Length
1.8e-4 m y0
4.0e-5 m Lplate
SAMEAS 0 Gas
kapton Solid

HXLAST Cold heat exchanger 5
SAMEAS 1 Area
0.67 GasA/A
2.54e-3 m Length
2.55e-4 m y0
3.0 W Heatin
200. K Est-T
SAMEAS 0 Gas

ISODUCT Cold Duct 6
3.84e-4 m2 Area
0.0694 m Perim
0.167 m Length
SAMEAS 0 Gas

ISOCONE 7
SAMEAS 6 Initial Area
SAMEAS 6 In Perim
6.68e-2 m Length
1.16e-3 m2 Final area
0.121 m Final perim
SAMEAS 0

COMPLIANCE end bulb 8
0.049 m2 Area
1.06e-3 m3 Volume

37

SAMEAS 0 Gas

HARDEND
0.000 R(Zin)
0.000 I(Zin)
SAMEAS 0 Gas type

Note the use of segment type STKSLab to model the parallel-plate stack geometry, and the
use of segment types ISOCOne and COMPLiance to model parts of the cold portion of the
resonator.

Executing DeltaE and choosing this input file, we used (C)lear|set to ask for default
targets,

No vectors defined...do you want enable a default
set of targets&guesses for this model? (y/n) y
Is this a prime-mover or a heat pump(p|h)? h

responding with ‘h’ because we now have a heat pump, and examine the vector status
summary:

Iteration Vectors Summary:
GUESS 0b 0c 0f
name BEGIN:Freq. BEGIN:T-beg BEGIN:|U|@0
value 5.00E+02 3.00E+02 5.00E-04
units Hz K m^3/s

TARGET 3f 9a 9b
name HXFRS:Est-T HARDE:R(1/Z HARDE:I(1/Z
units K
value 3.00E+02 0.00 0.00

Potential TARGETS still available:
Addr Seg:Par-Type Current Value
5e HXLAST:HeatIn= 3.000 W
5f HXLAST:Est-T = 200.0 K

This time we are not satisfied with DeltaE’s default choice of elements of this table.
We would like to generate a curve like Hofler’s Fig. 16. To show off DeltaE’s ability to
handle more dimensions in its shooting-method algorithm, and to get a direct grip on the
independent variable in Hofler’s figure, we made the refrigeration power a target, adding
the room temperature waste heat to the guess vector. After making these changes, the
vector summary looks like

Iteration Vectors Summary:
GUESS 0b 0c 0f 3e
name BEGIN:Freq. BEGIN:T-beg BEGIN:|U|@0 HXFRS:HeatI

38

value 5.00E+02 3.00E+02 5.00E-04 -20.0
units Hz K m^3/s W

TARGET 3f 5e 9a 9b
name HXFRS:Est-T HXLAS:HeatI HARDE:R(1/Z HARDE:I(1/Z
units K W
value 3.00E+02 3.0 .00 .00

Potential TARGETS still available are:
Addr Seg:Par-Type Current Value
5f HXLAST:Est-T = 200.0 K

Running this case produced the following .DAT file:

-= Hofler’s 1986 thermoacoustic refrigerator =-
frequency= 499.165Hz mean pressure= 1.000E+06Pa

T(K) p(Pa) U(m^3/s) hdot(W) wdot(W)
300.7 30000. 0.0 0.00051 0.00000 7.66 7.66

!------------------------------------ 1 ------------------------------------
ENDCAP Driver end 1
Heat extracted: 3.464E-02 Watts

300.7 30000. 0.0 0.00051 0.00000 7.62 7.62
!------------------------------------ 2 ------------------------------------
ISODUCT Room temp duct
Duct wavvec =(3.09 , -1.301E-02) m^-1
Heat extracted: 0.153 Watts

300.7 29740. -93.8 0.00049 -0.00273 7.47 7.47
!------------------------------------ 3 ------------------------------------
HXFRST Room temp duct heat
Heat exch wavvec =(3.67 , -0.890) m^-1
Heat = -9.640 (W) metal temp= 300.000 Kelvin

300.7 29573. -69.3 0.00044 -0.00302 -2.17 6.66
!------------------------------------ 4 ------------------------------------
STKSLAB Stack 4

218.6 26127. 640.8 0.00025 -0.00678 -2.17 1.05
!------------------------------------ 5 ------------------------------------
HXLAST Cold HX 5
Heat exch wavvec =(4.03 , -0.505) m^-1
Heat = 3.000 (W) metal temp= 218.857 Kelvin

218.6 25948. 662.0 0.00024 -0.00689 0.83 0.83
!------------------------------------ 6 ------------------------------------
ISODUCT Cold Duct 6
Duct wavvec =(3.63 , -2.005E-02) m^-1
Heat extracted: 0.678 Watts

218.6 1754. 21.0 0.00027 -0.00862 0.15 0.15
!------------------------------------ 7 ------------------------------------
ISOCONE 7
Heat extracted: 0.127 Watts

218.6 -4216. -138.7 0.00027 -0.00841 0.02 0.02
!------------------------------------ 8 ------------------------------------
COMPLIAN End Bulb 8
Heat extracted: 2.251E-02 Watts

218.6 -4216. -138.7 0.00000 0.00000 0.00 0.00
!------------------------------------ 9 ------------------------------------
HARDEND 9
inverse impedance (rho a U/p A)=(3.213E-10, 1.141E-09)

39

218.6 -4216. -138.7 0.00000 0.00000 0.00 0.00

Close examination of this result for reasonableness reveals a problem: The stack is
pumping 2.2 W of energy uphill, but 3.0 W of heat is being removed from the cold heat
exchanger! How can this be? The problem is in our use of ISODUct and ISOCOne in the
cold portion of the apparatus. DeltaE assumes that these segments are held isothermal
by external means. In this case, that means that in the duct, cone, and compliance, where
0.82 W of work is dissipated into heat, some external means removes that heat. In Hofler’s
work, that external means was a good thermal connection between these parts and the cold
heat exchanger, so that this heat appeared as a load on the cold heat exchanger.

There are two ways to deal with this problem. The first is to simply subtract the 0.82 W
from the 3 W when we want to know the “actual” net refrigeration power available at the
cold heat exchanger. This is not very elegant. The second is to use the insulated segment
types INSDUct and INSC0ne. (DeltaE will insulate the compliance as well.) This will
force heat dissipated in these segments to show up in the nearest heat exchanger.

To do this, we use a text editor to edit the input file, changing the two segments from
ISO- to INS-. We also chose to cut the cold heat exchanger heat from 3 W to 2.18 W so
that the “true” cooling power would be the same as above. Running this case produced

-= Hofler’s 1986 thermoacoustic refrigerator =-
frequency= 499.211Hz mean pressure= 1.000E+06Pa

T(K) p(Pa) U(m^3/s) hdot(W) wdot(W)
300.7 30000. 0.0 0.00051 0.00000 7.66 7.66

!------------------------------------ 1 ------------------------------------
ENDCAP Driver end 1
Heat extracted: 3.464E-02 Watts

300.7 30000. 0.0 0.00051 0.00000 7.63 7.63
!------------------------------------ 2 ------------------------------------
ISODUCT Room temp duct
Duct wavvec =(3.09 , -1.301E-02) m^-1
Heat extracted: 0.153 Watts

300.7 29740. -93.9 0.00049 -0.00273 7.47 7.47
!------------------------------------ 3 ------------------------------------
HXFRST Room temp duct heat
Heat exch wavvec =(3.67 , -0.890) m^-1
Heat = -9.652 (W) metal temp= 300.000 Kelvin

300.7 29573. -69.4 0.00044 -0.00302 -2.18 6.66
!------------------------------------ 4 ------------------------------------
STKSLAB Stack 4

218.6 26127. 640.8 0.00025 -0.00679 -2.18 1.05
!------------------------------------ 5 ------------------------------------
HXLAST Cold HX 5
Heat exch wavvec =(4.03 , -0.506) m^-1
Heat = 2.180 (W) metal temp= 218.828 Kelvin

218.6 25948. 662.0 0.00024 -0.00689 0.00 0.83
!------------------------------------ 6 ------------------------------------

40

INSDUCT Cold Duct 6
Duct wavvec =(3.63 , -2.006E-02) m^-1
Heat extracted: 0.000 Watts

218.6 1754. 21.0 0.00027 -0.00862 0.00 0.15
!------------------------------------ 7 ------------------------------------
INSCONE 7
Heat extracted: 0.000 Watts

218.6 -4216. -138.7 0.00027 -0.00841 0.00 0.02
!------------------------------------ 8 ------------------------------------
COMPLIAN End Bulb 8
Heat extracted: 1.523E-09 Watts

218.6 -4216. -138.7 0.00000 0.00000 0.00 0.00
!------------------------------------ 9 ------------------------------------
HARDEND 9
inverse impedance (rho a U/p A)=(-6.693E-12, 1.482E-12)

218.6 -4216. -138.7 0.00000 0.00000 0.00 0.00

Thus, the work dissipated in the cold portion showed up automatically in the cold heat
exchanger.

(INSulated segments are still under development and they don’t always do what we
want them to do. When using them, carefully examine the results for reasonableness. See
Chapter VI for details.)

To generate plots for comparison to Hofler’s data, we return to ISODUct and ISOCOne

because he added the dissipation in these components to his applied heat load for plotting.
We let the heat at the cold heat exchanger be the independent variable, ranging from 2
to 8 W in 0.5 W steps. To plot the temperature ratio and the coefficient of performance
(COP) relative to Carnot’s COP, we include work at segment 1, Tc, and Th in the list of
plotted variables:

Dependent Variables (outputs):
PLOTS 0A 0B 0C 0D 1F 3H
5H
name BEGIN:Freq. BEGIN:T-beg BEGIN:|U|@0 BEGIN:HeatI ENDCA:Work

HXFRS:Metal HXLAS:
units Hz K m^3/s W W K

K
Indpendent Variables (inputs):
Outer loop: 5e HXLAS:HeatI Beg= 2.0 End= 8.0 Step= 0.50

(The first three dependent variables listed are unclearable defaults that we ignore.) After
running this case, we changed |p1| to 0.015 of pm, changed the range of Qc to 0.7 to 3.7 W
in steps of 0.5 W, and ran it again. Exiting DeltaE, we found the following .des and
.plt files for the first case:

HXLAS:HeatI BEGIN:Freq .BEGIN:T-beg BEGIN:|U|@0 ENDCA:Work HXFRS:Metal

41

HXLAS:Metal
W Hz K m^3/s W K K

5e 0A 0B 0C 1F 3H 5H

2.000 493.1 300.6 4.7359E-04 7.069 300.0 212.9
2.500 496.2 300.6 4.9203E-04 7.346 300.0 215.9
3.000 499.2 300.7 5.1039E-04 7.321 300.0 218.9
3.500 502.1 300.7 5.2869E-04 7.896 300.0 221.8

...

Reading this file into spreadsheet/graphics software, and forming Tc/Th and COPR yielded
the curves in Figs. III.4. These plots come reasonably close to the measurements presented
in Figs. 16 and 17 of Hofler’s thesis.

Returning to INS-, we now use this example to introduce some more new segment types.

Since we frequently find it useful to consider engine efficiency or refrigerator coeffi-
cient of performance (COP), normalized by their Carnot values, we have special segments
COPRTarget and EFFRTarget to compute them. We can even use them as targets if desired.
We added a COPRTarget to our input file:

(skipping the first segments, which we’ve seen before)

!--------------------------------- 8 ---------------------------------
COMPLIAN End Bulb
4.9000E-02 a Area m^2 4218. A |p| Pa
1.0600E-03 b Volum m^3 -178.1 B Ph(p) deg

1.2793E-10 C |U| m^3/s
-103.8 D Ph(U) deg
7.3110E-08 E Hdot W

sameas 0 Gas type 7.3110E-08 F Work W
ideal Solid type -2.2509E-02 G HeatIn W

!--------------------------------- 9 ---------------------------------
HARDEND
0.0000 a R(1/Z) = 9G? 4218. A |p| Pa
0.0000 b I(1/Z) = 9H? -178.1 B Ph(p) deg

1.2793E-10 C |U| m^3/s
-103.8 D Ph(U) deg
7.3110E-08 E Hdot W
7.3110E-08 F Work W
3.2133E-10 G R(1/Z)

sameas 0 Gas type 1.1415E-09 H I(1/Z)
ideal Solid type 218.6 I T K

COPRT COP/COP-Carnot
0.13 Target
5G NumAdr
1F DenomAdr
3H ThAdr
5H TcAdr

! The restart information below was generated by a previous run

42

Figure III.4: Hofler refrigerator results. Lines are DeltaE results; points are from experi-

mental data. Squares , p1 = 0.015pm. Circles, p1 = 0.03pm.

43

! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this data only if you really know your model!
INVARS 4 0 2 0 3 0 6 3 5
TARGS 4 3 6 9 1 9 2 10 1
SPECIALS 0

Here, the COPRTarget segment directly calculates the result that we calculated laboriously
in our spreadsheet/graphics software using data from the .plt file. The result appears in
the .out file and the .dat file, and can be tabulated in the .plt file.

COPR can be used as a target. For instance, if we change the vector summary to

Iteration Vectors Summary:
GUESS 0b 0c 0f 3e
name BEGIN:Freq. BEGIN:T-beg BEGIN:|U|@0 HXFRS:HeatI
value 4.97E+02 3.01E+02 5.06E-04 -9.6
units Hz K m^3/s W

TARGET 3f 9a 9b 10a
name HXFRS:Est-T HARDE:R(1/Z HARDE:I(1/Z COPRT:Targe
units K
value 3.00E+02 .00 .00 .13

Potential TARGETS still available are:
Addr Seg:Par-Type Current Value
5e HXLAST:HeatIn= 2.190 W
5f HXLAST:Est-T = 200.0 K

and run the code, we can find an operating point on the plots above that corresponds to
COPR = 0.13.

Finally, a more realistic driver was added to the system, using VSPEAKer. We edited
the input file, adding VSPEAKer near the beginning. We deleted the ENDCAp segment that
was near the beginning because VSPEAker accounts for the oscillatory pressurization losses
on its surface area. We also added a difference target DIFFTarget at the end.

TITLE Hofler’s 1986 thermoacoustic refrigerator, w speaker

BEGIN 0
1.000E+06 a Mean P Pa
500. b Freq. Hz
300. c T-beg K

3.000E+04 d |p|@0 Pa
150.0 e Ph(p)0 deg
.000 f |U|@0 m^3/s
.000 g Ph(U)0 deg

helium Gas type
ideal Solid type

44

VSPEAKER 1
6.000E-04 a Area m^2
6.00 b R ohms
.000 c L H
8.00 d B x L T-m

5.000E-03 e M kg
.000 f K N/m
.000 g Rm N-s/m
20. h AplVol V

SAMEAS 0 Gas type
ideal Solid type

ISODUCT room temp duct 2
1.134E-03 a Area m^2
.119 b Perim m

4.260E-02 c Length m
SAMEAS 0 Gas type
ideal Solid type

HXFRST room temp heat excha 3
SAMEAS 2a a Area m^2

.600 b GasA/A
6.350E-03 c Length m
1.900E-04 d y0 m
-10. e HeatIn W
300. f Est-T K

SAMEAS 0 Gas type
ideal Solid type

STKSLAB Stack 4
SAMEAS 2a a Area m^2

.724 b GasA/A
7.850E-02 c Length m
1.800E-04 d y0 m
4.000E-05 e Lplate m

SAMEAS 0 Gas type
kapton Solid type

HXLAST Cold heat exchanger 5
SAMEAS 2a a Area m^2

.670 b GasA/A
2.540E-03 c Length m
2.550E-04 d y0 m
2.19 e HeatIn W
200. f Est-T K

SAMEAS 0 Gas type
ideal Solid type

INSDUCT Cold duct 6
3.840E-04 a Area m^2
6.940E-02 b Perim m
.167 c Length m

SAMEAS 0 Gas type
ideal Solid type

INSCONE 7
SAMEAS 6a a AreaI m^2
SAMEAS 6b b PerimI m

45

6.680E-02 c Length m
1.160E-03 d AreaF m^2
.121 e PerimF m

SAMEAS 0 Gas type
ideal Solid type

COMPLIANCE end bulb 8
4.900E-02 a Area m^2
1.060E-03 b Volum m^3

SAMEAS 0 Gas type
ideal Solid type

HARDEND 9
.000 a R(1/Z)
.000 b I(1/Z)

SAMEAS 0 Gas type
ideal Solid type

DIFFTARGET 10
.000 a Target

1B b
1L c

The mass, resistance, and force constant for the speaker roughly reflect the values given in
Hofler’s thesis. We estimate it will take about 20 V to drive it.

We used the difference target DIFFTarget segment to maintain resonance, by ensuring
that the phases of p1 and U1 are equal at the driver. We did this by forcing their difference,
computed by subtracting the values addressed by lines 10b and 10c, to be zero, the value
given in line 10a. Examination of a VSPEAKer segment output

VSPEAKER
6.0000E-04 a Area m^2 3.0000E+04 A |p| Pa
6.000 b R ohms 153.8 B Ph(p) deg

0.0000 c L H 5.0874E-04 C |U| m^3/s
8.000 d B x L T-m 153.8 D Ph(U) deg

5.0000E-03 e M kg 7.631 E Hdot W
0.0000 f K N/m 7.631 F Work W
0.0000 g Rm N-s/m 31.17 G WorkIn W
22.63 h AplVol V G 22.63 H Volts V

2.800 I Amps V
-10.30 J Ph(Ze) deg
5.0996E-04 K |Ux| m^3/s

sameas 0 Gas type 153.8 L Ph(-Ux deg
ideal Solid type -23.54 M HeatIn W

shows us that lines 10b and c should contain addresses 1B and 1L.

Running DeltaE with this input file, we modified guesses and targets to arrive at

Iteration Vectors Summary:

46

GUESS 0b 0c 0e 1h 3e
name BEGIN:Freq. BEGIN:T-beg BEGIN:Ph(p) VSPEA:AplVo HXFRS:HeatI
value 5.00E+02 3.00E+02 150. 20. -10.0
units Hz K deg V W

TARGET 3f 5e 9a 9b 10a
name HXFRS:Est-T HXLAS:HeatI HARDE:R(1/Z HARDE:I(1/Z DIFFT:Targe
units K W
value 3.00E+02 2.2 .00 .00 .00

Potential TARGETS still available are:
Addr Seg:Par-Type Current Value
5f HXLAST:Est-T = 200.0 K

This shows our five-dimensional search. It is the most complicated vector summary table
we have yet encountered, so we pause to discuss how we chose our vectors. We definitely
needed the two HARDEnd impedances in the target vector (there is no hole in the end of
the apparatus). Experimentally, we maintain the hot heat exchanger at 300 Kelvin; but
DeltaE computes that as a result of each integration pass, so it must also be a target.
Experimentally, we control the heat load on the cold heat exchanger, but because this is
an HXLASt, DeltaE calculates it as a result of each integration pass, so it too must be a
target. So far we have four targets, so we require four guesses. Look first at the BEGIN

segment for candidate guesses. Clearly the beginning temperature should be a guess: we
need to guess beginning T to arrive at HXFRSt T correctly. Next, we must guess the
frequency to maintain resonance. But how is resonance determined experimentally? By
comparing the phases of p1 and U1 at the driver: hence, we added their difference= 0 as
a fifth target. We need the phase of p1 at the beginning to be a guess, since the phase of
everything is determined relative to that of the speaker voltage phase, which is fixed at 0o.
Other good candidate guesses are heats in HXFRSts or HXMIDls. The heat in the first heat
exchanger must be guessed because we don’t control it experimentally yet it is required by
DeltaE in each pass. By now we have five targets and four guesses; we needed one more
guess. Our guess could be |p1| at the beginning, which would be an experimental result
if we controlled the drive voltage. Instead, however, we let the drive voltage be the guess
because the experimenter used it to get |p1| to be 0.03 pm.

Choosing the vector members is not easy for a complicated thermoacoustic system. To
choose them wisely, there is no substitute for careful thought about the system and what
you want it to do. We offer a few general guides for this careful thought process. It is helpful
to think about what variables are (or could be, in principle) experimentally controlled and
what variables are experimentally observed. These must be compared with the variables
that DeltaE needs as inputs during each integration pass through the system and those
that DeltaE computes as results during each integration pass.

47

Experimentally
Controlled Variable

Experimentally
a Result

Variable needed as
input for each pass
of DeltaE’s integra-
tion

simply fixed in
input file

guess

Variable computed
as result of each
pass of DeltaE’s
integration

target
simply a result
in output files

Note that our definition of an experimental result is more general than usual. In the
Hofler refrigerator case, we considered the drive voltage an experimental result because
it is determined experimentally by the condition that the pressure amplitude have the
desired value. The viewpoint expressed in this table is appropriate for comparison of
DeltaE and experimental data. In this case, geometrical parameters are simply fixed.
Targets are experimentally fixed or controlled variables that are results of a single pass
of numerical integration, chosen from among Tm, p1, and U1 (everywhere but in BEGIN);
heats at HXLASTs; current magnitudes and phases in VDUCERs and voltage magnitudes and
phases in IDUCERs; etc. Guesses are known or unknown experimental results chosen from
among f , the magnitude and phase of U1-BEGIN and p1-BEGIN, Tm-BEGIN, heats at HXFRSTs
or HXMIDLs, and the magnitude and phase of voltage at VDUCERs, etc.

When designing hardware instead of analyzing it, a different viewpoint may be adopted.
In this case, many geometrical parameters are not yet fixed, but desired operating temper-
atures, powers, frequency, etc. have been chosen. Often, several geometrical parameters
are included as guesses, and more temperatures and other numerical results are included
as targets. Hence, another useful way to think about guesses and targets is represented by
the following table:

48

Variable we want to
think of as fixed

Variable we want to
think of as a result

Variable needed as
input for each pass
of DeltaE’s integra-
tion

simply fixed in
input file

guess

Variable computed
as result of each pass
of DeltaE’s
integration

target
simply a result
in output files

Now we return to our example. Running this case produces the following dat file:

-= Hofler’s 1986 thermoacoustic refrigerator, w speaker =-
frequency= 499.272Hz mean pressure= 1.000E+06Pa
T(K) p(Pa) U(m^3/s) hdot(W) wdot(W)
300.7 -26913. 13255.7 0.00000 0.00000 0.00 0.00

!------------------------------------ 1 ------------------------------------
VSPEAKER
(22.6 , 0.000) Volts,(2.75 , 0.501) Amps
Heat extracted: I^2 R= 23.5 , u^2 Rm= 0.000 , B-Layer= 1.833E-02 Watts.

300.7 -26913. 13255.7 -0.00046 0.00022 7.63 7.63
!------------------------------------ 2 ------------------------------------
ISODUCT Room temp duct
Duct wavvec =(3.09 , -1.301E-02) m^-1
Heat extracted: 0.153 Watts

300.7 -26638. 13225.3 0.00076 0.00267 7.48 7.48
!------------------------------------ 3 ------------------------------------
HXFRST Room temp duct heat
Heat exch wavvec =(3.67 , -0.890) m^-1
Heat = -9.668 (W) metal temp= 300.000 Kelvin

300.7 -26499. 13129.3 0.00094 0.00290 -2.19 6.67
!------------------------------------ 4 ------------------------------------
STKSLAB Stack

218.7 -23721. 10969.4 0.00278 0.00620 -2.19 1.05
!------------------------------------ 5 ------------------------------------
HXLAST Cold HX
Heat exch wavvec =(4.03 , -0.506) m^-1
Heat = 2.190 (W) metal temp= 218.888 Kelvin

218.7 -23570. 10871.3 0.00283 0.00629 0.00 0.83
!------------------------------------ 6 ------------------------------------
INSDUCT Cold Duct
Duct wavvec =(3.63 , -2.006E-02) m^-1
Heat extracted: 0.000 Watts

218.7 -1583. 756.3 0.00357 0.00786 0.00 0.15
!------------------------------------ 7 ------------------------------------
INSCONE
Heat extracted: 0.000 Watts

218.7 3843. -1738.5 0.00348 0.00766 0.00 0.02
!------------------------------------ 8 ------------------------------------
COMPLIAN End Bulb

49

Heat extracted: 3.051E-05 Watts
218.7 3843. -1738.5 0.00000 0.00000 0.00 0.00

!------------------------------------ 9 ------------------------------------
HARDEND
inverse impedance (rho a U/p A)=(-1.341E-07, 2.214E-07)

218.7 3843. -1738.5 0.00000 0.00000 0.00 0.00
!------------------------------------ 10 ------------------------------------
DIFFTARGET
Derived difference = 8.269E-06

218.7 3843. -1738.5 0.00000 0.00000 0.00 0.00

This run also produces the following .out file:

TITLE Hofler’s 1986 thermoacoustic refrigerator, w speaker
!--------------------------------- 0 ---------------------------------
BEGIN
1.0000E+06 a Mean P Pa 499.3 A Freq. G(0b) P
499.3 b Freq. Hz G 300.7 B T-beg G(0c) P
300.7 c T-beg K G 153.8 C Ph(p)0 G(0e) P

3.0000E+04 d |p|@0 Pa 22.63 D AplVol G(1h) P
153.8 e Ph(p)0 deg G -9.668 E HeatIn G(3e) P

0.0000 f |U|@0 m^3/s
0.0000 g Ph(U)0 deg

helium Gas type
ideal Solid type

!--------------------------------- 1 ---------------------------------
VSPEAKER
6.0000E-04 a Area m^2 3.0000E+04 A |p| Pa
6.000 b R ohms 153.8 B Ph(p) deg

0.0000 c L H 5.0874E-04 C |U| m^3/s
8.000 d B x L T-m 153.8 D Ph(U) deg

5.0000E-03 e M kg 7.631 E Hdot W
0.0000 f K N/m 7.631 F Work W
0.0000 g Rm N-s/m 31.17 G WorkIn W
22.63 h AplVol V G 22.63 H Volts V

2.800 I Amps V
-10.30 J Ph(Ze) deg
5.0996E-04 K |Ux| m^3/s

sameas 0 Gas type 153.8 L Ph(-Ux deg
ideal Solid type -23.54 M HeatIn W

!--------------------------------- 2 ---------------------------------
ISODUCT Room temp duct
1.1340E-03 a Area m^2 2.9741E+04 A |p| Pa
0.1190 b Perim m 153.6 B Ph(p) deg
4.2600E-02 c Length m 2.7746E-03 C |U| m^3/s

74.04 D Ph(U) deg
7.478 E Hdot W

sameas 0 Gas type 7.478 F Work W
ideal Solid type -0.1534 G HeatIn W

!--------------------------------- 3 ---------------------------------
HXFRST Room temp duct heat
sameas 2a a Area m^2 2.9573E+04 A |p| Pa
0.6000 b GasA/A 153.6 B Ph(p) deg
6.3500E-03 c Length m 3.0511E-03 C |U| m^3/s
1.9000E-04 d y0 m 72.15 D Ph(U) deg
-9.668 e HeatIn W G -2.190 E Hdot W

50

300.0 f Est-T K = 3H? 6.670 F Work W
sameas 0 Gas type -9.668 G Heat W
ideal Solid type 300.0 H MetalT K

!--------------------------------- 4 ---------------------------------
STKSLAB Stack
sameas 2a a Area m^2 2.6134E+04 A |p| Pa
0.7240 b GasA/A 155.2 B Ph(p) deg
7.8500E-02 c Length m 6.7906E-03 C |U| m^3/s
1.8000E-04 d y0 m 65.86 D Ph(U) deg
4.0000E-05 e Lplate m -2.190 E Hdot W

1.054 F Work W
300.7 G T-beg K

sameas 0 Gas type 218.7 H T-end K
kapton Solid type -5.616 I StkWrk W

!--------------------------------- 5 ---------------------------------
HXLAST Cold HX
sameas 2a a Area m^2 2.5956E+04 A |p| Pa
0.6700 b GasA/A 155.2 B Ph(p) deg
2.5400E-03 c Length m 6.8953E-03 C |U| m^3/s
2.5500E-04 d y0 m 65.77 D Ph(U) deg
2.190 e HeatIn W = 5G? 0.0000 E Hdot W
200.0 f Est-T K (t) 0.8280 F Work W

sameas 0 Gas type 2.190 G Heat W
ideal Solid type 218.9 H MetalT K

!--------------------------------- 6 ---------------------------------
INSDUCT Cold Duct
3.8400E-04 a Area m^2 1754. A |p| Pa
6.9400E-02 b Perim m 154.5 B Ph(p) deg
0.1670 c Length m 8.6291E-03 C |U| m^3/s

65.59 D Ph(U) deg
0.0000 E Hdot W

sameas 0 Gas type 0.1494 F Work W
ideal Solid type 0.0000 G HeatIn W

!--------------------------------- 7 ---------------------------------
INSCONE
sameas 6a a AreaI m^2 4218. A |p| Pa
sameas 6b b PerimI m -24.34 B Ph(p) deg
6.6800E-02 c Length m 8.4160E-03 C |U| m^3/s
1.1600E-03 d AreaF m^2 65.59 D Ph(U) deg
0.1210 e PerimF m 0.0000 E Hdot W

sameas 0 Gas type 2.2491E-02 F Work W
ideal Solid type 0.0000 G HeatIn W

!--------------------------------- 8 ---------------------------------
COMPLIAN End Bulb
4.9000E-02 a Area m^2 4218. A |p| Pa
1.0600E-03 b Volum m^3 -24.34 B Ph(p) deg

2.7931E-08 C |U| m^3/s
96.85 D Ph(U) deg

-3.0510E-05 E Hdot W
sameas 0 Gas type -3.0510E-05 F Work W
ideal Solid type -3.0510E-05 G HeatIn W

!--------------------------------- 9 ---------------------------------
HARDEND
0.0000 a R(1/Z) = 9G? 4218. A |p| Pa
0.0000 b I(1/Z) = 9H? -24.34 B Ph(p) deg

2.7931E-08 C |U| m^3/s
96.85 D Ph(U) deg

-3.0510E-05 E Hdot W

51

-3.0510E-05 F Work W
-1.3406E-07 G R(1/Z)

sameas 0 Gas type 2.2143E-07 H I(1/Z)
ideal Solid type 218.7 I T K

!--------------------------------- 10 ---------------------------------
DIFFTARGET
0.0000 a TargDi =10A? 8.2692E-06 A D1-D2
1B b D1Addr
1L c D2Addr

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 5 0 2 0 3 0 5 1 8 3 5
TARGS 5 3 6 5 5 9 1 9 2 10 1
SPECIALS 0

These acoustic and thermal results are the same as for without the speaker, except that
everything is shifted in phase by -26 degrees. This shift occurred because we had set the
phase of U1 at the driver, arbitrarily, at zero before, but now the phase of the speaker
voltage determines the zero of phase for the system, and the nonzero imaginary part of
its mechanical impedance causes a phase shift between the voltage and the velocity. New
results appear in the VSPEAker segment; note for example that |I|2R/2 is the difference
between the work into the segment (1/2<(IṼ)) and the work out of it.

D Further Thermoacoustic Features

In this section we list the commonly used thermoacoustic segment types. More details on
each can be found in Chapter VI; a complete list can be found in Chapter VI.

STKCIrc A stack with circular pores. We use this to model hexagonal honeycomb stacks.

STKSLab A stack with parallel-plate geometry.

STKREct A stack with rectangular (box) pore geometry.

STKPIns A stack comprised of an array of pins parallel to x.

STKDUct A stack with lateral dimensions much larger than δκ, computed in boundary-layer
approximation.

STKSCreen A screen regenerator for Stirling systems.

HXFRSt A parallel-plate heat exchanger that comes before one of the STK segment types.

52

HXMIDl A parallel-plate heat exchanger that comes between STK segments.

HXLASt A parallel-plate heat exchanger that comes after a STK segment.

TXFRSt, TXMIDl, TXLASt Tube-array heat exchangers, with the thermoacoustic working
fluid inside the tubes.

SXFRSt, SXMIDl, SXLASt Stacked-screen heat exchangers, valid only for δκ greater than
hydraulic radius.

INSDUct An insulated duct; the work dissipated in it shows up in the nearest heat ex-
changer.

INSCOne An insulated cone; the work dissipated in it shows up in the nearest heat ex-
changer.

E Advanced Operations

These menu options are not necessary for ordinary operation of the code, but they offer
some substantial conveniences for experienced users.

(R)estore vectors. Before beginning iterations during a (r)un operation, DeltaE saves
copies of the guess vector values. Whenever an unsuccessful run overwrites the guess
vector (leaving you and DeltaE hopelessly lost), you can use this option to restore
all the parameters that were changed to their starting point. Simply (R)estore,
modify some value(s), and try again. There are warnings about trying to use this
option after the vector table has been edited, which of course would make no sense.

If you do not respond ‘y’es to the prompt about vector restoration and you have one
or both plot loops enabled, you will be given an additional option:

Restore to state before last (B)egin or (r)un (y|n)? n

Restore from a recently plotted point? y

DeltaE will now proceed to display the .plt file one line at a time. After each line
this prompt appears:

Return to this state (y|n|Q)? y

Typing ‘y’ at this point causes the independent plot variable(s) and all members of
the guess vector to be returned to those values displayed in the file. Typing ‘n’ (or
simply <CR>) causes the next line to be displayed. ‘Q’ skips to the end of the file

53

and makes no changes. No outputs are changed when this option is executed, so the
model must be (r)un again to update them; however, be sure to disable the outer
plot loop first if you want only one point. Alternatively, you can change the step or
endpoints of the plot loop and start plotting again.

This option only works on the current (open) plot file, and it is not useful until after
a run which has produced plot points.

(E)xtras The following model editing features are found under the (E)xtras submenu.
Some less commonly used options (described in the next chapter) are also in this
menu (v1.x DeltaE users will note that these options used to reside in the main
menu):

(S)plit segment. This option automates the laborious process of splitting a duct
segment (or anything else that has a length) into two segments each with half the
original length, correcting the sameas and free target references, and correcting
the iteration, optimization, and plot vectors. To partition the lengths differently,
it is convenient to use (s)pecial modes editing to link the first length to
the second, then (m)odify the first length, then clear (zero) the parameter
linking before using the length in the iteration or optimization vector, if that
is the intention. (All free targets, vectors, or sameas references to the segment
specified are incremented by one; that is, the number of the original segment is
incremented by one, and the ‘clone’ segment is effectively inserted before it.)

(K)ill segment. This option simply removes a segment from your model. Unlike
(S)plit segment, however, it works on any type of segment (except BEGIN),
and it does nothing intelligent with any lengths that are removed. The user
must compensate another length where appropriate.

(I)nsert segment. DeltaE will prompt you for the correct number of parameters,
giving the parameter name and units. This function is not perfectly interactive.
If you make errors in typing in new parameter values, you will be left with a
segment that is partly the same as the previous occupant of this spot. You may
be able to recover by using the (m)odify value option in the main menu for
numerical parameters. In the worst case (a bad segment type, for example), you
may have to (K)ill the new segment and start over again. (I)nsert before
#segments+1 is permitted to add a segment at the very end.

(F)lip model. For the same reason that DeltaE is most useful in the first place,
that is, because an adequate set of boundary conditions is almost never known
at the most convenient point to start calculations, the number of guesses and
targets can sometimes be reduced by starting the integration of a model from
what you previously considered the ‘bottom.’ Orifice pulse tube refrigerators
(described in Chapter IV), are a particularly good example because they ‘end’
with a known impedance, but the ‘beginning’ driving impedance is generally
unknown. The (F)lip model operation automates switching back and forth

54

between these two approaches to a solution, sparing the user from an effort
that is otherwise tedious and very error prone. (F)lip reverses the order of
every segment between the BEGIN and the last HARDEND or SOFTEnd and reverse
their order. Segments within TBRANches are left in their original order, however.
sameas, freetarget and plot references are all adjusted and an attempt is made to
reform the guess and target vectors. Each HXFRst segment becomes an HXLAst,
and vice versa.

Additional options are described at the end of Chapter V.

55

56

Chapter IV

Stirling Systems

Rott’s equations implemented in DeltaE are valid for any phase difference between oscil-
latory pressure and oscillatory velocity, and any degree of thermal contact in the “stack”.
Hence, DeltaE can be used to model Stirling thermodynamic systems, in which p1 and
U1 are substantially in phase, as well as thermoacoustic devices in which the phases p1

and U1 differ by nearly 90◦. The principle additional DeltaE segment needed is one for
stacked screen beds, because stacked screen regenerators are more common than parallel-
plate, circular, or rectangular pore regenerators. In our opinion, the principle shortcomings
of DeltaE for Stirling applications are DeltaE’s acoustic approximation (which leads to
reduced accuracy at high pressure amplitudes) and its inability to predict end effects and
streaming-driven convective heat transport in pulse tubes (a shortcoming shared by many
other design programs). Its principle virtues are speed and easy integral modeling of some
auxiliary components such as ducts, dead volumes, and linear motors.

Harmonic analysis of Stirling systems is discussed by I. Urieli and D. M. Berchowitz,
“Stirling Cycle Engine Analysis” (Hilger, Bristol, 1984) and by A. J. Organ, “Thermody-
namics and Gas Dynamics of the Stirling Cycle Machine” (Cambridge University Press,
1992).

A Principles of Computation—Stacked Screens

The full details of the stacked-screen computation method implemented in DeltaE are
described by G. W. Swift and W. C. Ward, “Simple harmonic analysis of stacked-screen
regenerators,” J. Thermophys. and Heat Trans. 10, 652-662 (1996). As usual in DeltaE
we adopt the point of view described at the beginning of Chapter III: We will regard p1,
U1, and Tm as the dependent variables of interest. Given their values at one end, we can

57

generate p1(x), U1(x), and Tm(x) throughout the regenerator, using equations of the form

dp1/dx = F1(p1, U1, Tm, H2, geometry), (IV.1)

dU1/dx = F2(p1, U1, Tm, H2, geometry), (IV.2)

dTm/dx = F3(p1, U1, Tm, H2, geometry). (IV.3)

The exact forms of these equations are displayed in Chapter VI below. Because p1 and U1

are complex, Eqs. (IV.1)-(IV.3) actually represent 5 real first-order differential equations.
Equation (IV.1) is based largely on the screen friction factor data of Kays and London.
Equation (IV.2) is based on the continuity equation, and Eq. (IV.3) on the equation for
time-averaged energy flux H2 through the regenerator; both of the latter use the screen
heat transfer coefficient data from Kays and London. The equations are not accurate for
hydraulic radius on the order of δκ or greater.

The segment type implementing this algorithm is called STKSCreen. Corresponding
heat exchangers, comprising stacked screens, are called SXFRSt, SXMIDl, and SXLASt, in
which p1 and U1 are computed using Eqs. (IV.1) and (IV.2), with dTm/dx = 0. As with
the parallel-plate heat exchange segments HX...., a gas-to-metal temperature difference,
proportional to the heat exchanger’s heat flow, is also incorporated.

B Stirling Cryocooler

The sample files Stirling.* represent a simple 55 Hz, 2 MPa helium Stirling cryocooler
with stacked-screen regenerator and heat exchangers. This apparatus is illustrated in
Fig. IV.1. First, we examine Stirling.out:

TITLE Bare bones Stirling cryocooler
!--------------------------------- 0 ---------------------------------
BEGIN Initialize things
2.0000E+06 a Mean P Pa 300.1 A T-beg G(0c) P
55.00 b Freq. Hz 2.8520E+05 B |p|@0 G(0d) P
300.1 c T-beg K G -42.95 C Ph(p)0 G(0e) P

2.8520E+05 d |p|@0 Pa G -36.02 D HeatIn G(1e) P
-42.95 e Ph(p)0 deg G
3.6500E-04 f |U|@0 m^3/s
0.0000 g Ph(U)0 deg

helium Gas type
ideal Solid type

!--------------------------------- 1 ---------------------------------
SXFRST hot heat exchanger
sameas 2a a Area m^2 2.8145E+05 A |p| Pa
0.6000 b VolPor -43.66 B Ph(p) deg
1.0000E-03 c Length m 3.6265E-04 C |U| m^3/s

sameas 2d d r_H m -0.3920 D Ph(U) deg

58

-36.02 e HeatIn W G 2.076 E Hdot W
300.0 f Est-T K = 1H? 37.16 F Work W

sameas 0 Gas type -36.02 G Heat W
copper Solid type 300.0 H MetalT K

!--------------------------------- 2 ---------------------------------
STKSC regenerator
1.1670E-04 a Area m^2 2.2874E+05 A |p| Pa
0.6860 b VolPor -52.95 B Ph(p) deg
5.0000E-02 c Length m 6.2215E-05 C |U| m^3/s
1.3900E-05 d r_H m -49.48 D Ph(U) deg
0.3000 e KsFrac 2.076 E Hdot W

7.102 F Work W
300.1 G T-beg K

sameas 0 Gas type 79.96 H T-end K
stainless Solid type -30.06 I StkWrk W

!--------------------------------- 3 ---------------------------------
SXLASt cold heat exch
sameas 2a a Area m^2 2.2833E+05 A |p| Pa
0.6000 b VolPor -52.96 B Ph(p) deg
1.0000E-03 c Length m 6.2000E-05 C |U| m^3/s

sameas 2d d r_H m -52.00 D Ph(U) deg
0.0000 e HeatIn W (t) 7.077 E Hdot W
80.00 f Est-T K = 3H? 7.077 F Work W

sameas 0 Gas type 5.001 G Heat W
copper Solid type 80.00 H MetalT K

!--------------------------------- 4 ---------------------------------
FREETARG U sub 1 at cold end
6.2000E-05 a Target = 4A? 6.2000E-05 A FreeT
3C b ResAdr

!--------------------------------- 5 ---------------------------------
FREETARG phase(U) at cold end
-52.00 a Target = 5A? -52.00 A FreeT
3D b ResAdr

!--------------------------------- 6 ---------------------------------
SOFTEnd useless but required
0.0000 a Re(Z) (t) 2.2833E+05 A |p| Pa
0.0000 b Im(Z) (t) -52.96 B Ph(p) deg

6.2000E-05 C |U| m^3/s
-52.00 D Ph(U) deg
7.077 E Hdot W
7.077 F Work W
67.82 G Re(Z)

helium Gas type -1.134 H Im(Z)
ideal Solid type 79.96 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 4 0 3 0 4 0 5 1 5
TARGS 4 1 6 3 6 4 1 5 1
SPECIALS 0

The real segments consist of a first heat exchanger, at 300 K, the regenerator, and a
last heat exchanger at 80 K. All three are stacked screens. The other segments—BEGIN,
the FREETARGETs, and SOFTEND—simply define the boundary conditions.

59

Figure IV.1: The Stirling cryocooler.

We arrived at the hydraulic radius rh and volumetric porosity φ for the screens by hand,
using expressions from Organ’s book:

φ = 1−
πmd

4

√
1 + (md)

2

rh =
d

4

φ

1− φ

where d is wire diameter and m is mesh number (i.e., number of wires per unit length).
The regenerator is a little over 1 cm in diameter and is 5 cm long. The heat exchangers
are the same diameter but only 1 mm long.

DeltaE estimates the temperature difference between the helium gas and the copper
screen wires in the heat exchangers, but it has no provision for estimating the temperature
difference between the screen wires and the “housing” in which they are mounted (due
to the finite thermal conductance of the screen wires themselves). This is not a serious
concern for small machines, but should be checked by hand on a case-by-case basis.

Line e in the regenerator segment, “Ksfrac”, is the fudge factor by which longitudinal
conduction through the regenerator is reduced due to the spatially intermittent thermal
contact between adjacent screens. Following Radebaugh, we often set Ksfrac=0.3 (N.B:
rumor has it that he will announce a lower preferred value soon).

60

Our point of view with respect to boundary conditions in this example is most easily
displayed by running DeltaE on this file and examining the vector summary

Iteration Vectors Summary:
GUESS 0c 0d 0e 1e
name BEGIN:T-beg BEGIN:|p|@0 BEGIN:Ph(p) SXFRS:HeatI
units K Pa deg W
value 3.00E+02 2.93E+05 -43. -37.

TARGET 1f 3f 4a 5a
name SXFRS:Est-T SXLAS:Est-T FREET:Targe FREET:Targe
units K K
value 3.00E+02 80. 6.20E-05 -52.

result .00 .00 .00 .00
Potential TARGETS still available:
Addr Seg:Par-Type Current Value
3e SXLASt:HeatIn= .0000 W
6a SOFTEn:Re(Z) = .0000
6b SOFTEn:Im(Z) = .0000

and the BEGIN segment above. Here, we are considering the volumetric velocities (both
magnitudes and phases) at the two ends to be given, as if we have in mind an “alpha”
Stirling machine, with two pistons determining the volumes of the compression and ex-
pansion spaces, respectively. The volumetric velocity at the hot end is set by lines f and
g in the BEGIN segment. The 0◦ phase of line 0g essentially determines the zero of phase
for the entire system. The volumetric velocity 3.65×10−4 m3/s of line 0f, (together with
the frequency set in line 0b), implies a volumetric stroke of 2.1 cm3 peak-to-peak at the
hot end. The FREETARGETs at the cold end ensure that DeltaE’s shooting method ar-
rives there with the desired cold piston stroke and phase. To arrive at these two targets,
DeltaE adjusts two guesses: the pressure amplitude and phase in the BEGIN segment (and
hence throughout the cooler). We also insist that the metal temperatures in the two heat
exchangers be 300 K and 80 K; DeltaE achieves these two targets by adjusting two more
guesses: the heat extracted at the hot heat exchanger, and the temperature in the BEGIN

segment.

DeltaE predicts that, under these circumstances, the cooler will reject 36 W at the
hot heat exchanger and will have a cooling power of 5 W. This cooling power accounts
for heat conduction and enthalpy flow through the regenerator, but does not account for
any heat load imposed by the regenerator case conduction nor any load from frictional
irreversibilities in the cold piston.

We now make or suggest a few simple modifications to this file to illustrate additional
features of DeltaE.

To discover what temperature the cooler would maintain with a heat load of 10 W
instead of 5 W, we (c)lear 3f—the cold heat exchanger temperature—from the target list.
Instead, we (u)se 3e—the cooling power—as a target, and (m)odify it to 10 W. Running

61

DeltaE shows that under these circumstances the cold temperature will be 232 K. Using
3e as an independent (p)lot variable running from 10 W to 2 W with steps of, say, 0.5 W,
and using 3H (cold metal temperature) as dependent (p)lot variable will generate a table
of cold temperature (and other defaults) vs heat load:

gross cooling metal temp
power @ cold hx

SXLAS:HeatI BEGIN:T-beg BEGIN:|p|@0 BEGIN:Ph(p) SXFRS:HeatI SXLAS:Metal
W K Pa deg W K
3e 0A 0B 0C 0D 3H

10.00 300.1 4.3154E+05 -71.57 -24.00 232.0
9.500 300.1 4.1420E+05 -70.09 -24.73 212.4
9.000 300.1 3.9704E+05 -68.40 -25.56 193.6
8.500 300.1 3.8016E+05 -66.45 -26.48 175.7
8.000 300.1 3.6368E+05 -64.22 -27.51 158.8
7.500 300.1 3.4778E+05 -61.67 -28.66 142.9
7.000 300.1 3.3265E+05 -58.75 -29.91 128.1
6.500 300.1 3.1853E+05 -55.43 -31.28 114.4
6.000 300.1 3.0571E+05 -51.69 -32.76 101.9
5.500 300.1 2.9449E+05 -47.52 -34.35 90.41
5.000 300.1 2.8518E+05 -42.94 -36.03 79.98
4.500 300.2 2.7809E+05 -37.99 -37.79 70.53
4.000 300.2 2.7348E+05 -32.74 -39.63 61.99
3.500 300.2 2.7154E+05 -27.31 -41.54 54.28
3.000 300.2 2.7240E+05 -21.81 -43.51 47.32
2.500 300.2 2.7609E+05 -16.38 -45.54 41.02
2.000 300.2 2.8252E+05 -11.14 -47.62 35.32

Insertion of two ISPEAKer segments before the aftercooler and after the cold heat ex-
changer would model use of linear motors driving pistons there.

Finally, in the next chapter “Advanced Features” we will use TBRANCH and UNION to
change this model from an “alpha” Stirling machine to a “beta” or “gamma”, with one
power piston on the hot end and a displacer piston in parallel with the heat exchange
elements.

C Pulse Tube Refrigerator

Changing a Stirling cryocooler into an orifice pulse tube refrigerator is a simple matter
of replacing the cold piston with a pulse tube, heat exchanger, orifice, and reservoir vol-
ume in series. Fig. IV.2 represents such a cooler. The sample files optr.* represent a
300 Hz, 3 MPa helium orifice pulse tube refrigerator. After running DeltaE on optr.in

or optr.out, we find the following .out and .dat files:

TITLE an early Tektronix cooler design

62

Figure IV.2: An Orifice Pulse Tube Refrigerator (OPTR).

!--------------------------------- 0 ---------------------------------
BEGIN Start with 8% p osc
3.0000E+06 a Mean P Pa 300.1 A T-beg G(0c) P
300.0 b Freq. Hz 7.1473E-03 B |U|@0 G(0f) P
300.1 c T-beg K G 50.44 C Ph(U)0 G(0g) P

2.4000E+05 d |p|@0 Pa -491.6 D HeatIn G(1e) P
0.0000 e Ph(p)0 deg 5.338 E HeatIn G(3e) P
7.1473E-03 f |U|@0 m^3/s G
50.44 g Ph(U)0 deg G

helium Gas type
ideal Solid type

!--------------------------------- 1 ---------------------------------
SXFRST Aftercooler
1.0290E-03 a Area m^2 2.2896E+05 A |p| Pa
0.6900 b VolPor -3.587 B Ph(p) deg
1.2500E-02 c Length m 6.0488E-03 C |U| m^3/s
6.4500E-05 d r_H m 44.21 D Ph(U) deg
-491.6 e HeatIn W G 54.65 E Hdot W
300.0 f Est-T K = 1H? 465.2 F Work W

helium Gas type -491.6 G Heat W
copper Solid type 300.0 H MetalT K

!--------------------------------- 2 ---------------------------------
STKSCRN Regenerator
sameas 1a a Area m^2 1.6392E+05 A |p| Pa
0.7300 b VolPor -21.11 B Ph(p) deg
5.5000E-02 c Length m 1.3354E-03 C |U| m^3/s
2.4000E-05 d r_H m -24.44 D Ph(U) deg
0.3000 e KsFrac 54.65 E Hdot W

109.3 F Work W
300.1 G T-beg K

helium Gas type 150.0 H T-end K
stainless Solid type -355.9 I StkWrk W

!--------------------------------- 3 ---------------------------------
SXMIDL Cold heat exchanger
sameas 4a a Area m^2 9.4427E+04 A |p| Pa
0.6900 b VolPor -19.40 B Ph(p) deg
2.0000E-03 c Length m 1.3347E-03 C |U| m^3/s
6.4500E-05 d r_H m -24.70 D Ph(U) deg
5.338 e HeatIn W G 59.99 E Hdot W
150.0 f Est-T K = 3H? 62.75 F Work W

helium Gas type 5.338 G Heat W
copper Solid type 150.0 H MetalT K

63

!--------------------------------- 4 ---------------------------------
STKDU Pulse tube
5.6870E-05 a Area m^2 9.8905E+04 A |p| Pa
2.6740E-02 b Perim m (-2) -55.22 B Ph(p) deg
0.2000 c Length m 1.2939E-03 C |U| m^3/s
1.0000E-05 d WallA m^2 -42.68 D Ph(U) deg

59.99 E Hdot W
62.46 F Work W
150.0 G T-beg K

helium Gas type 300.2 H T-end K
stainless Solid type -0.2886 I StkWrk W

!--------------------------------- 5 ---------------------------------
SXLAST Hot heat exchanger
sameas 4a a Area m^2 2.6242E+04 A |p| Pa
0.6900 b VolPor -103.4 B Ph(p) deg
5.0000E-03 c Length m 1.2905E-03 C |U| m^3/s
6.4500E-05 d r_H m -42.97 D Ph(U) deg
-23.00 e HeatIn W (t) 8.360 E Hdot W
300.0 f Est-T K = 5H? 8.360 F Work W

helium Gas type -51.63 G Heat W
copper Solid type 300.0 H MetalT K

!--------------------------------- 6 ---------------------------------
IMPEDANCE The orifice
1.0000E+07 a Re(Zs) Pa-s/m^3 2.2821E+04 A |p| Pa
0.0000 b Im(Zs) Pa-s/m^3 -132.8 B Ph(p) deg

1.2905E-03 C |U| m^3/s
-42.97 D Ph(U) deg
3.3426E-02 E Hdot W

sameas 0 Gas type 3.3426E-02 F Work W
ideal Solid type -8.327 G HeatIn W

!--------------------------------- 7 ---------------------------------
COMPLIANCE Reservoir volume
1.2680E-02 a Area m^2 (-5) 2.2821E+04 A |p| Pa
1.5000E-04 b Volum m^3 -132.8 B Ph(p) deg

1.2556E-08 C |U| m^3/s
-57.78 D Ph(U) deg
3.6948E-05 E Hdot W

sameas 0 Gas type 3.6948E-05 F Work W
ideal Solid type -3.3389E-02 G HeatIn W

!--------------------------------- 8 ---------------------------------
HARDEND The end
0.0000 a R(1/Z) = 8G? 2.2821E+04 A |p| Pa
0.0000 b I(1/Z) = 8H? -132.8 B Ph(p) deg

1.2556E-08 C |U| m^3/s
-57.78 D Ph(U) deg
3.6948E-05 E Hdot W
3.6948E-05 F Work W
5.4890E-08 G R(1/Z)

helium Gas type 2.0563E-07 H I(1/Z)
ideal Solid type 300.2 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 5 0 3 0 6 0 7 1 5 3 5
TARGS 5 1 6 3 6 5 6 8 1 8 2
SPECIALS 2 4 -2 7 -5

64

-= an early Tektronix cooler design =-
frequency= 300.000Hz mean pressure= 3.000E+06Pa

T(K) p(Pa) U(m^3/s) hdot(W) wdot(W)
300.1 240000. 0.0 0.00455 0.00551 546.24 546.24

!------------------------------------ 1 ------------------------------------
SXFRST Aftercooler
Heat = -491.587 (W) metal temp= 300.000 Kelvin

300.1 228514. -14323.4 0.00434 0.00422 54.65 465.19
!------------------------------------ 2 ------------------------------------
STKSCRN Regenerator

150.0 152921. -59043.8 0.00122 -0.00055 54.65 109.27
!------------------------------------ 3 ------------------------------------
SXMIDL Cold heat exchanger
Heat = 5.338 (W) metal temp= 150.000 Kelvin

150.0 89065. -31366.9 0.00121 -0.00056 59.99 62.75
!------------------------------------ 4 ------------------------------------
STKDU Pulse tube

300.2 56422. -81232.3 0.00095 -0.00088 59.99 62.46
!------------------------------------ 5 ------------------------------------
SXLAST Hot heat exchanger
Heat = -51.632 (W) metal temp= 299.999 Kelvin

300.2 -6074. -25529.7 0.00094 -0.00088 8.36 8.36
!------------------------------------ 6 ------------------------------------
IMPEDANCE The orifice
Imped. work (heat extracted)= 8.33 Watts

300.2 -15517. -16733.8 0.00094 -0.00088 0.03 0.03
!------------------------------------ 7 ------------------------------------
COMPLIANCEReservoir volume
Heat extracted: 3.339E-02 Watts

300.2 -15517. -16733.8 0.00000 0.00000 0.00 0.00
!------------------------------------ 8 ------------------------------------
HARDEND The end
inverse impedance (rho a U/p A)=(5.489E-08, 2.056E-07)

300.2 -15517. -16733.8 0.00000 0.00000 0.00 0.00

The Stirling part of the system is modeled as a stacked-screen regenerator STKSCREEN

and two stacked-screen heat exchangers SXFRST and SXMIDL. We model the pulse tube itself
as a STKDUCT, using Rott’s wave equation and enthalpy flux equation in boundary-layer
approximation, because the tube diameter is À δκ. (We will discuss this approximation
shortly.) The heat exchanger at the hot end of the pulse tube is the HXLAST. The orifice and
reservoir volume are easily modeled as a DeltaE IMPEDance and COMPLiance, respectively.
Our use of zero for the imaginary part of the IMPEDance reflects our intention that this
orifice will truly be resistive, with pressure drop in phase with mass flux.

For purposes of illustration here, we will regard the geometry of the apparatus as given,
and will explore its performance. The vector summary indicates our point of view:

Iteration Vectors Summary:
GUESS 0c 0f 0g 1e 3e
name BEGIN:T-beg BEGIN:|U|@0 BEGIN:Ph(U) SXFRS:HeatI SXMID:HeatI
units K m^3/s deg W W

65

value 3.00E+02 7.15E-03 50. -4.92E+02 5.3
TARGET 1f 3f 5f 8a 8b
name SXFRS:Est-T SXMID:Est-T SXLAS:Est-T HARDE:R(1/Z HARDE:I(1/Z
units K K K
value 3.00E+02 1.50E+02 3.00E+02 .00 .00

result 3.00E+02 1.50E+02 3.00E+02 7.61E-08 -3.47E-08

Three of the 5 targets fix the hot and cold temperatures at 300 K and 150 K. We leave
the amplitude of the oscillatory pressure at the BEGINning at 8% of mean pressure, and
leave the frequency fixed at 300 Hz. Hence, we are asking: What is the cooling power at 150
K, and how much input power, volumetric velocity, etc. are required, for fixed frequency
and pressure amplitude? The result, given in the file listings above: 5.34 W of cooling
power, requiring 546 W of input power from the compressor.

Our choice of Re(Zs) = 1× 107 for the orifice impedance above was random. To find a
better orifice setting, we can use Re(Zs) as an independent plot variable, letting it range
from 1× 107 to 1× 108. The cooling power peaks at 7.58 W for Re(Zs) = 4.7× 107.

As with most optr models we have worked with in DeltaE this one is not particularly
“robust”. A change of a typical variable by 20% or 30% will likely cause DeltaE to get
hopelessly lost. Hence the steps we used in the plotting of Re(Zs) were small: 1 × 106.
Part of the “‘fragility” of optr models (as compared to thermoacoustic models) in DeltaE
is due to the fact that small changes in variables near the BEGINning, such as p1, U1, and
the heat removed at the aftercooler, have a large effect on temperatures at the end of the
pulse tube. Some of the fragility is due to the fact that optr models typically have a large
number of guesses and targets. Thus, when you encounter a fragile DeltaE model, try to
reduce the number of guesses and targets as much as possible (particularly in initial design
explorations when you are more lost than DeltaE) and, once you have a convergent model,
make only small changes in variables. Tighten up DeltaE’s convergence tolerance if you
have to use more than 5 guesses and 5 targets. To accomplish a large change in a variable,
use (p)lot to break it up into many small steps. A fast computer and frequent saving of
satisfactory converged models will minimize frustration.

Examination of the pulse tube segment in the .dat file above shows a possible prob-
lem: The pulse tube figure of merit, which Radebaugh defines as Ḣ/Ẇ , is high: Ḣ/Ẇ '
60 W/63 W' 0.95. A more common experimental value of pulse tube figure of merit is
0.7. DeltaE knows nothing about jet-, turbulence-, or streaming-driven convection, and
pulse-tube experimentalists have not yet learned how to reliably avoid such convection. For
a discussion of streaming-driven convection, see “Acoustic streaming in pulse tube refriger-
ators: Tapered pulse tubes,” J. R. Olson and G. W. Swift, to be published in Cryogenics,
1997.

66

To force DeltaE to accomodate such a reduced pulse tube figure of merit, you can
introduce a new segment QUOTARGET (short for quotient target, discussed more fully in the
next chapter) and an additional guess/target pair. The quotient target is used to maintain
the quotient of any two output variables fixed. Hence, it can maintain the ratio of pulse tube
enthalpy flux to pulse tube work flux equal to 0.7. You can simulate the thermal loading
of streaming-driven convection, etc. by letting DeltaE guess an unphysically large value
for the cross section of the pulse tube wall (line 4d), which then conducts significant heat
from hot to cold, allowing DeltaE to meet its target of 0.7. We will not do so here.

We can improve the overall performance of this refrigerator by a simple means, similar in
principle to the second orifice of a double-inlet pulse tube refrigerator: adding a small duct
between the orifice and reservoir volume adds inertance to the impedance of the end of the
system; proper choice of the length/area of this duct can phase shift the mass flow through
the orifice significantly. This is entirely analogous to putting an inductor in series with an
RC circuit, and is described in “Use of inertance in orifice pulse tube refrigerators,” D. L.
Gardner and G. W. Swift, to be published in Cryogenics in 1997, and references therein.
Adding an inertance to our model, and adjusting its area/length and Re(Zs) of the orifice
for maximum cooling power brings the cooling power up to 11.7 W in the .out file below.

TITLE an early Tektronix cooler design
!->optr2.out
!Created@11:46: 6 23-May-97 with DeltaE Vers. 3.5b1 for the IBM/PC-Compatible
!--------------------------------- 0 ---------------------------------
BEGIN Start with 8% p osc
3.0000E+06 a Mean P Pa 300.1 A T-beg G(0c) P
300.0 b Freq. Hz 7.1813E-03 B |U|@0 G(0f) P
300.1 c T-beg K G 52.28 C Ph(U)0 G(0g) P

2.4000E+05 d |p|@0 Pa -473.8 D HeatIn G(1e) P
0.0000E+00 e Ph(p)0 deg 11.75 E HeatIn G(3e) P
7.1813E-03 f |U|@0 m^3/s G
52.28 g Ph(U)0 deg G

helium Gas type
ideal Solid type

!--------------------------------- 1 ---------------------------------
SXFRST Aftercooler
1.0290E-03 a Area m^2 2.2942E+05 A |p| Pa
0.6900 b VolPor -3.702 B Ph(p) deg
1.2500E-02 c Length m 6.0603E-03 C |U| m^3/s
6.4500E-05 d r_H m 46.38 D Ph(U) deg
-473.8 e HeatIn W G 53.41 E Hdot W
300.0 f Est-T K = 1H? 446.1 F Work W

helium Gas type -473.8 G Heat W
copper Solid type 300.0 H MetalT K

!--------------------------------- 2 ---------------------------------
STKSCRN Regenerator
sameas 1a a Area m^2 1.6909E+05 A |p| Pa
0.7300 b VolPor -21.79 B Ph(p) deg
5.5000E-02 c Length m 1.2017E-03 C |U| m^3/s
2.4000E-05 d r_H m -23.78 D Ph(U) deg
0.3000 e KsFrac 53.41 E Hdot W

101.5 F Work W

67

300.1 G T-beg K
helium Gas type 149.9 H T-end K
stainless Solid type -344.6 I StkWrk W

!--------------------------------- 3 ---------------------------------
SXMIDL Cold heat exchanger
sameas 4a a Area m^2 1.1266E+05 A |p| Pa
0.6900 b VolPor -21.34 B Ph(p) deg
2.0000E-03 c Length m 1.2007E-03 C |U| m^3/s
6.4500E-05 d r_H m -24.10 D Ph(U) deg
11.75 e HeatIn W G 65.16 E Hdot W
150.0 f Est-T K = 3H? 67.56 F Work W

helium Gas type 11.75 G Heat W
copper Solid type 150.0 H MetalT K

!--------------------------------- 4 ---------------------------------
STKDU Pulse tube
5.6870E-05 a Area m^2 1.1252E+05 A |p| Pa
2.6740E-02 b Perim m (-2) -48.69 B Ph(p) deg
0.2000 c Length m 1.1960E-03 C |U| m^3/s
1.0000E-05 d WallA m^2 -47.60 D Ph(U) deg

65.16 E Hdot W
67.28 F Work W
149.9 G T-beg K

helium Gas type 300.1 H T-end K
stainless Solid type -0.2844 I StkWrk W

!--------------------------------- 5 ---------------------------------
SXLAST Hot heat exchanger
sameas 4a a Area m^2 4.0780E+04 A |p| Pa
0.6900 b VolPor -52.34 B Ph(p) deg
5.0000E-03 c Length m 1.1947E-03 C |U| m^3/s
6.4500E-05 d r_H m -48.04 D Ph(U) deg
-23.00 e HeatIn W (t) 24.29 E Hdot W
300.0 f Est-T K = 5H? 24.29 F Work W

helium Gas type -40.87 G Heat W
copper Solid type 300.0 H MetalT K

!--------------------------------- 6 ---------------------------------
IMPEDANCE The orifice
3.4037E+07 a Re(Zs) Pa-s/m^3 3054. A |p| Pa
0.0000E+00 b Im(Zs) Pa-s/m^3 -138.0 B Ph(p) deg

1.1947E-03 C |U| m^3/s
-48.04 D Ph(U) deg
1.4901E-03 E Hdot W

sameas 0 Gas type 1.4901E-03 F Work W
ideal Solid type -24.29 G HeatIn W

!--------------------------------- 7 ---------------------------------
ISODUCT inertance
2.8000E-02 a Area m^2 3061. A |p| Pa
0.5932 b Perim m (-2) -138.0 B Ph(p) deg
3.1620E-02 c Length m 1.7312E-04 C |U| m^3/s
3.0000E-04 d Srough -48.13 D Ph(U) deg

6.0081E-04 E Hdot W
sameas 0 Gas type 6.0081E-04 F Work W
ideal Solid type -8.8931E-04 G HeatIn W

!--------------------------------- 8 ---------------------------------
COMPLIANCE Reservoir volume
1.2680E-02 a Area m^2 (-5) 3061. A |p| Pa
1.5000E-04 b Volum m^3 -138.0 B Ph(p) deg

4.6748E-11 C |U| m^3/s
15.51 D Ph(U) deg

68

-6.4043E-08 E Hdot W
sameas 0 Gas type -6.4043E-08 F Work W
ideal Solid type -6.0087E-04 G HeatIn W

!--------------------------------- 9 ---------------------------------
HARDEND The end
0.0000E+00 a R(1/Z) = 9G? 3061. A |p| Pa
0.0000E+00 b I(1/Z) = 9H? -138.0 B Ph(p) deg

4.6748E-11 C |U| m^3/s
15.51 D Ph(U) deg

-6.4043E-08 E Hdot W
-6.4043E-08 F Work W
-5.2868E-09 G R(1/Z)

helium Gas type 2.6354E-09 H I(1/Z)
ideal Solid type 300.1 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 5 0 3 0 6 0 7 1 5 3 5
TARGS 5 1 6 3 6 5 6 9 1 9 2
SPECIALS 3 4 -2 7 -2 8 -5

Tektronix researchers used DeltaE to model a 350 Hz orifice pulse tube refrigerator,
as described in the article by Godshalk et al. in the proceedings of the 1995 Cryogenic
Engineering Conference: Advances in Cryogenic Engineering,41, 1411-1418 (Plenum, New
York, 1996).

D Etched Foil Regenerators

The segment STKPOwerlaw is intended to model regenerators for which the friction factor
and heat transfer coefficient are power laws in Reynold’s number. This include Ran Yaron’s
etched foil regenerators. For input syntax and mathematical details, see the end of section
VI.B.5.

69

70

Chapter V

Advanced Features

This chapter introduces additional features of DeltaE that expand its uses and conve-
nience for the user who is already comfortable with the basics. Here we explain “free
targets” that allow the increased control over the endpoints of DeltaE’s iterations and
incorporate some basic math functions; active branches that permit simultaneous calcu-
lation of side branches and main ducts for complicated models; additional fluid options,
including binary gas mixtures; parameter linking so that iterations can be performed while
maintaining certain geometric relationships in the model; and several other useful features
and tunable parameters.

A Free Targets

DeltaE reserves a place for a special input parameter to hold a target value in the segment
types that have outputs commonly used in targets; these parameters are: heat exchanger
temperatures and heat flows and complex impedances in HARD- and SOFTEnd segments
(UNIONs, introduced in the next section, are a special case). The code knows, internally, to
pair these input values with the appropriate output results of the segment for comparison.
The experienced user, however, will soon hunger for more possibilities once a model is de-
fined and converging to meet the basic targets. An application may call for work, pressure,
or velocity (magnitude or phase) to be specified at a certain point, or some derived function
of outputs may be desired for targeting or plotting. Free targets are used for these pur-
poses. We can also use them to generate a new type of output based on other outputs in
the model; in this case, the first ‘target’ parameter is simply ignored. All free targets have
one real input and one real output which DeltaE recognizes as a potential target/result
pair. The other input parameters to these segments are one or more addresses.

71

There are 7 types of free targets: FREETarget, QUOTArget, COPRTarget, EFFRTarget,
PRODTarget, DIFFTarget, and VOLMTarget. The latter six perform some basic math on
the outputs they reference. For more complicated functions, free targets can be cascaded.
However, it is not our intention to provide a complete (convoluted!) mathematical language
using these modules. For more elaborate post processing of outputs, we encourage the use
of spreadsheets or math-capable stream-edit tools such as awk or perl.

The “target” parameter of free targets, like that of any other targets, can be used as
the independent variable in a plotting loop. All free targets should be placed after all the
segments that they reference in the model so that, during processing (which is sequential),
they will be updated with the most recent results. Free target specifications do not end
with fluid and solid names like normal segments.

FREETarget. The basic form of free target simply allows you to specify one additional
input value that you wish to have the solver compare with an output value that it
normally does not consider. It has two input parameters: the real target value, and
an output address (e.g. 5F).

QUOTArget. Almost the same as the FREETarget, the QUOTArget adds an additional output
address; it generates its output value from the quotient of the first output (NumAdr)
divided by the second output (DenomAdr). One obvious use for such a module is to
generate an efficiency, W/Q, or a COP. The efficiency may be used as a target (which
may or may not converge, depending on how greedy you are), or it can simply be
inserted as a plot parameter, to save the trouble of doing the calculation later.

COPRTarget, EFFRTarget. These two relative targets are quotient targets taken a step
further: they also use the addresses of two temperatures, ThAdr and TcAdr, so that
DeltaE can take the quotient and normalize it by Carnot’s COP or efficiency. The
COPRTarget has already been introduced in the previous chapter, in one of the Hofler
refrigerator examples. COPRTarget computes

Qc

W

Th − Tc
Tc

;

EFFRTarget computes
W

Qh

Th
Th − Tc

.

It is up to the user to ensure that the addresses given are truly what they are said
to be. (Note: the COPRTarget and EFFRTarget can be set up to use gas tempera-
tures, parameters G and H in the stack, instead of metal temperatures from the heat
exchangers. The effect is to give system performance for ideal heat exchangers.)

PRODTarget. Similar to the quotient target, a product target takes two output addresses
but generates its output from their product. This module can be useful for generating

72

some figure-of-merit that is to be maximized over a series of plot points. For example,
COPR ∗ COPR ∗ Qc can be generated from a COPRTarget and two PRODTargets by
the following model fragment:

!--------------------------------- 10 ---------------------------------
COPRT COP/COP-Carnot

0.000 a Target (t) 0.0130 A COP/Cc
5G NumAdr
1F DenomAdr
3H ThAdr
5H TcAdr

!--------------------------------- 11 ---------------------------------
PRODT

0.000 a Target (t) 0.0169 A Prod.
10A b M1Addr
10A c M2Addr

!--------------------------------- 12 ---------------------------------
PRODT

0.000 a Target (t) 8.45 A Prod.
11A b M1Adr
5G c M2Adr

(This is about as extreme an example of ‘free target mathematics’ as we would like
to envision.)

DIFFTarget. The difference target, which has been introduced in the final Hofler refrig-
erator example to maintain resonance at the speaker, is like quotient and product
targets in that it takes two output addresses; it generates an output equal to their
difference. These targets are often used for phases, so differences of 0 or ±90 will be
common targets.

VOLMTarget. The volume target has two address parameters, and it simply generates an
output equal to the total volume contained in segments between those two addresses
(inclusive). Only the segment number is used; the parameter letter is ignored. The
first segment number must be less than or equal to the second. This target is intended
to give an indication of the overall size and weight of a design (or a portion of it) for
doing tradeoff analysis.

CONSTants: While CONSTants is not itself a free target segment, its use is usually in
conjunction with them. This segement simply copies input parameters to the output
parameter space where they can be used in “free target mathematics.” It also copies
(and scales) the current plot loop values (which are inputs) into the output space
since they would not otherwise be available.

For a concise listing of all the free targets and their parameters, please consult the
reference section in Chapter VI.

73

B Active Branches

Although BRANCh and OPNBRanch have their uses, they are often inadequate for describing
the variations in branch impedance with operating conditions. For example, the branch
might be a Helmholtz resonator whose impedance changes significantly with frequency. Fur-
ther, BRANCh and OPNBRanch are wholly inadequate when branches involve thermoacoustic
components. The TBRANch segment addresses these inadequacies by allowing DeltaE to
integrate its way down a side branch and then return to the trunk and integrate there as
before.

As an example, consider the modification shown in Figure V.1 to the basic “beer cooler”
(heat-driven thermoacoustic refrigerator) shown in Figure I.7. We might want to investi-
gate whether performance would improve by adding the side branch so that the entire
volume velocity required by the prime-mover stack would no longer have to flow through
the refrigerator stack and much of the resonator dissipation would show up at ambient
temperature instead of at the cold heat exchanger.

Figure V.1: Modified “beer cooler.”

DeltaE uses the TBRANch segment for cases like this. When it encounters a TBRANch,
DeltaE treats subsequent segments as the sequential members of the branch, until it
reaches a HARDEnd or SOFTEnd. It then “returns to the trunk,” treating the rest of the
segments as trunk members. So the sequence of segments for the example of Figure IV.1
might be as follows:

TITLE
BEGIN 0
ENDCAP 1

74

ISODUCT 2
HXFRST 3
STKSLAB 4
HXLAST 5
TBRANCH 6

ISOCONE 7
ISODUCT 8
COMPLIANCE 9
HARDEND 10

HXFRST 11
STKSLAB 12
HXLAST 13
ISODUCT 14
COMPLIAN 15
HARDEND 16

Segments 5 through 9 comprise the side branch; the others comprise the trunk.

The method of computation is as follows. At a branch, the branch impedance determines
how the (complex) volume velocity splits up at the branch. Often, we use the branch
impedance as a pair of guesses that DeltaE adjusts in its usual way to get the complex
impedance at the next ’END to come out right. (If asked to do so, DeltaE should pair
select both of these guess and target pairs as part of a default set. If not, you should enable
them.) TBRANCHed models tend to have guess and target vectors of high dimension, since
every ’END contributes two targets (and a few more targets are almost always needed for
temperatures, heats, etc.). Stacks and heat exchangers can also be used in branches, and,
of course, branches can have subbranches of their own.

TBRANch has a companion segment type, TEE, that takes the filename of another valid
DeltaE input file as its only parameter. When DeltaE encounters a TEE, it loads the
named file into the model, and replaces the BEGIN segment of the branch file with a TBRANch

segment. It tries to guess starting values for the complex branch impedance, and then
adjusts the addresses in any sameas declarations and free target-type segments occurring
in the branch (or after the branch point) by the number of segments in the branch. Once the
file has been read in, the TEE segment disappears—the .out file and (d)isplayed segments
will be the composite model.

When rewriting our previous example to use a TEE segment, the model has the form

TITLE
BEGIN 0
ENDCAP 1
ISODUCT 2
HXFRST 3
STKSLAB 4
HXLAST 5
TEE 6
branch.in

75

HXFRST 7
STKSLAB 8
HXLAST 9
ISODUCT 10
COMPLIAN 11
HARDEND 12

where we have omitted the parameters of all but the TEE segment. The file branch.in is a
valid DeltaE input file, which we have run and debugged separately. This input file looks
like this:

TITLE
BEGIN 0
ISOCONE 1
ISODUCT 2
COMPLIANCE 3
HARDEND 4

The file may have any name (e.g., branch.in, branch.out, branch.tee), but it must be
specified with the complete suffix.

The two models above will combine to produce the same model as our first example.
This approach is recommended, especially for nontrivial branches containing stacks, etc.,
so that the two simpler submodels can be evaluated first. The impedance that DeltaE
chooses for the TBRANch may need immediate attention; guess and target vectors, free
targets, and sameas references should also be checked carefully. Special modes (see below)
that link length parameters across the branch point will not be handled properly, and must
be redone with new segment numbers.

The multiply-connected duct network of Figure I.3 can also be handled by DeltaE,
through use of TBRANch and UNION. The UNION segment is used to tell DeltaE to “connect”
a TBRANch’s SOFTEnd (or HARDEnd) back to the trunk at the location of the UNION segment.
The branch’s’ SOFTEnd impedance targets are no longer used; instead, the two real input
variables (b and c) of the UNION segment should always be active targets. It does not matter
what the initial values of these parameters are; as soon as DeltaE processes the segment,
it copies in the current values of the complex pressure at the SOFTEnd referenced by the
number in parameter a of the UNION segment. These values are compared to the local
complex pressure result, at this UNION, in the trunk, and iteration should drive the model
until their difference is zero. In other words, when a branch and trunk meet at a UNION,
they must share the same complex p1. As before, a guessed branch impedance usually
determines how the (complex) volume velocity splits up at the TBRANch. Volume velocities
are summed at the UNION. (The UNION segment is somewhat similar to the freetargets of
the previous section, except that it grabs two results simultaneously, from fixed locations

76

Figure V.2: “Gamma”-style Stirling machine.

within the referenced segment. Also, the ‘target’ values are not specified by the user, since
they move dynamically depending on what is happening at the attached ’End segment.)

As an example of use of TBRANch and UNION, we return to the Stirling cryocooler ex-
ample of the previous chapter, and convert it to a “gamma” style Stirling machine, with a
compressor piston at the hot end and a displacer piston connecting the hot and cold ends.
In the previous example, PU power flowed in at the BEGIN and out at the ...END; with a
displacer piston, the cold-end PU power is returned automatically to the hot end, reducing
the hot-end PU power requirement.

The apparatus layout is illustrated in Fig. V.2; the corresponding DeltaE file layout
is

TITLE
BEGIN

TBRANCH
IMPEDANCE (the displacer)
SOFTEND

SXFRST
STKSCREEN
SXLAST
UNION (’connects’ to softend above)
HARDEND

77

and the corresponding .out file is

TITLE Stirling cooler w displacer piston, illustrating TBRANCH--UNION
!--------------------------------- 0 ---------------------------------
BEGIN Initialize things
2.0000E+06 a Mean P Pa 300.1 A T-beg G(0c) P
55.00 b Freq. Hz 2.8597E+05 B |p|@0 G(0d) P
300.1 c T-beg K G -42.49 C Ph(p)0 G(0e) P

2.8597E+05 d |p|@0 Pa G -4.5489E+09 D Re(Zb) G(1a) P
-42.49 e Ph(p)0 deg G -7.6222E+08 E Im(Zb) G(1b) P
3.3000E-04 f |U|@0 m^3/s -8.5227E+08 F Re(Zs) G(2a) P
9.000 g Ph(U)0 deg -7.8741E+08 G Im(Zs) G(2b) P

helium Gas type -36.05 H HeatIn G(4e) P
ideal Solid type

!--------------------------------- 1 ---------------------------------
TBRANCH branch to displacer
-4.5489E+09 a Re(Zb) Pa-s/m^3 G 2.8597E+05 A |p| Pa
-7.6222E+08 b Im(Zb) Pa-s/m^3 G -42.49 B Ph(p) deg

6.2000E-05 C |U| m^3/s
128.0 D Ph(U) deg

-8.743 E Hdot W
sameas 0 Gas type -8.743 F Work W
ideal Solid type 38.12 G Work_T W

!--------------------------------- 2 ---------------------------------
IMPEDANCE displacer, sort of
-8.5227E+08 a Re(Zs) Pa-s/m^3 G 2.2920E+05 A |p| Pa
-7.8741E+08 b Im(Zs) Pa-s/m^3 G -52.39 B Ph(p) deg

6.2000E-05 C |U| m^3/s
128.0 D Ph(U) deg

-7.105 E Hdot W
sameas 0 Gas type -7.105 F Work W
ideal Solid type 1.638 G HeatIn W

!--------------------------------- 3 ---------------------------------
SOFTEND reconnect at UNION
0.0000 a Re(Z) (t) 2.2920E+05 A |p| Pa
0.0000 b Im(Z) (t) -52.39 B Ph(p) deg

6.2000E-05 C |U| m^3/s
128.0 D Ph(U) deg

-7.105 E Hdot W
-7.105 F Work W
-131.9 G Re(Z)

sameas 0 Gas type 0.8990 H Im(Z)
ideal Solid type 300.1 I T K

!--------------------------------- 4 ---------------------------------
SXFRST Hot heat exchanger
sameas 5a a Area m^2 2.8223E+05 A |p| Pa
0.6000 b VolPor -43.20 B Ph(p) deg
1.0000E-03 c Length m 3.6176E-04 C |U| m^3/s
sameas 5d d r_H m 4.1153E-02 D Ph(U) deg
-36.05 e HeatIn W G 2.072 E Hdot W
300.0 f Est-T K = 4H? 37.19 F Work W

sameas 0 Gas type -36.05 G Heat W
copper Solid type 300.0 H MetalT K

!--------------------------------- 5 ---------------------------------
STKSC regenerator
1.1670E-04 a Area m^2 2.2961E+05 A |p| Pa
0.6860 b VolPor -52.39 B Ph(p) deg

78

5.0000E-02 c Length m 6.2189E-05 C |U| m^3/s
1.3900E-05 d r_H m -49.47 D Ph(U) deg
0.3000 e KsFrac 2.072 E Hdot W

7.130 F Work W
300.1 G T-beg K

sameas 0 Gas type 79.96 H T-end K
stainless Solid type -30.06 I StkWrk W

!--------------------------------- 6 ---------------------------------
SXLASt cold heat exch
sameas 5a a Area m^2 2.2920E+05 A |p| Pa
0.6000 b VolPor -52.39 B Ph(p) deg
1.0000E-03 c Length m 6.2000E-05 C |U| m^3/s
sameas 5d d r_H m -52.00 D Ph(U) deg
0.0000 e HeatIn W (t) 7.105 E Hdot W
80.00 f Est-T K = 6H? 7.105 F Work W

sameas 0 Gas type 5.033 G Heat W
copper Solid type 80.00 H MetalT K

!--------------------------------- 7 ---------------------------------
UNION displacer cold end

3.000 a TendSg 2.2920E+05 A |p| Pa
2.2920E+05 b |p|End Pa = 7A? -52.39 B Ph(p) deg
-52.39 c Ph(p)E deg = 7B? 4.4516E-11 C |U| m^3/s

88.75 D Ph(U) deg
-3.9725E-06 E Hdot W

sameas 0 Gas type -3.9725E-06 F Work W
ideal Solid type 0.0000 G HeatIn W

!--------------------------------- 8 ---------------------------------
FREETARGET displacer U
6.2000E-05 a Target = 8A? 6.2000E-05 A FreeT
6C b ResAdr

!--------------------------------- 9 ---------------------------------
FREETARGET displacer phase
-52.00 a Target = 9A? -52.00 A FreeT
6D b ResAdr

!--------------------------------- 10 ---------------------------------
HARDEND the end
0.0000 a R(1/Z) =10G? 2.2920E+05 A |p| Pa
0.0000 b I(1/Z) =10H? -52.39 B Ph(p) deg

4.4516E-11 C |U| m^3/s
88.75 D Ph(U) deg

-3.9725E-06 E Hdot W
-3.9725E-06 F Work W
-8.2110E-09 G R(1/Z)

helium Gas type 6.6160E-09 H I(1/Z)
ideal Solid type 79.96 I T K

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 8 0 3 0 4 0 5 1 1 1 2 2 1 2 2 4 5
TARGS 8 4 6 6 6 7 2 7 3 8 1 9 1 10 1 10 2
SPECIALS 0

We are using an IMPEDance segment as the displacer piston. The real part of its
impedance tells us how much power is needed to move the displacer, in order to overcome

79

friction and viscous losses in the regenerator and heat exchangers. The imaginary part of
the IMPEDance’s impedance tells us whether the displacer needs to look massy (positive
values) or springy (negative values) in order to move as desired.

Our guess/target vector summary is the largest we have yet encountered in this user’s
guide—eight each:

Iteration Vectors Summary:
GUESS 0c 0d 0e 1a 1b 2a
name BEGIN:T-beg BEGIN:|p|@0 BEGIN:Ph(p) TBRAN:Re(Zb TBRAN:Im(Zb IMPED:Re(Zs
units K Pa deg Pa-s/m^3 Pa-s/m^3 Pa-s/m^3
value 3.00E+02 2.86E+05 -43. -4.55E+09 -7.62E+08 -8.52E+08
GUESS 2b 4e
name IMPED:Im(Zs SXFRS:HeatI
units Pa-s/m^3 W
value -7.87E+08 -36.

TARGET 4f 6f 7b 7c 8a 9a
name SXFRS:Est-T SXLAS:Est-T UNION:|p|En UNION:Ph(p) FREET:Targe FREET:Targe
units K K Pa deg
value 3.00E+02 80. 2.29E+05 -52. 6.20E-05 -52.

result .00 .00 .00 .00 .00 .00
TARGET 10a 10b
name HARDE:R(1/Z HARDE:I(1/Z
units
value .00 .00

result .00 .00
Potential TARGETS still available:
Addr Seg:Par-Type Current Value
3a SOFTEN:Re(Z) = .0000
3b SOFTEN:Im(Z) = .0000
6e SXLASt:HeatIn= .0000 W

One can think of these guesses and targets as paired up in the following way. The
T-begin guess lets DeltaE hit the T-hot target; these two are so nearly equal, and so
trivially related, that they could easily be dropped from the vectors if necessary. The two
branch-impedance guesses and the two IMPEDance guesses let DeltaE reach four targets:
the two p targets at the UNION and the two U free targets that essentially determine the
displacer piston’s motion. The heat removed at the hot heat exchanger determines the
temperature at the cold heat exchanger. Finally, the two p guesses in the BEGIN segment
allow DeltaE to achieve U = 0 at the HARDENd at the end of the apparatus.

Running this file produced the .out file listed above, and the .dat file below:

-= Stirling cooler w displacer piston, illustrating TBRANCH--UNION =-
frequency= 55.000Hz mean pressure= 2.000E+06Pa

T(K) p(Pa) U(m^3/s) hdot(W) wdot(W)
300.1 210877. -193152.0 0.00033 0.00005 29.38 29.38

!------------------------------------ 1 ------------------------------------

80

TBRANCH branch to displacer
TTTTTTTTTTTTTTTTTTTT Branching into Tee Level= 1 TTTTTTTTTTTTTTTTTTTT

300.1 210877. -193152.0 -0.00004 0.00005 -8.74 -8.74
!------------------------------------ 2 ------------------------------------
IMPEDANCE displacer, sort of
Imped. work (heat extracted)= -1.64 Watts

300.1 139875. -181568.9 -0.00004 0.00005 -7.11 -7.11
!------------------------------------ 3 ------------------------------------
SOFTEND reconnect at UNION
impedance (p A/rho a U)=(-132. , 0.899)

300.1 139875. -181568.9 -0.00004 0.00005 -7.1 -7.11
TTTTTTTTTTTTTTTTTTTT Returning to Trunk Level= 0 TTTTTTTTTTTTTTTTTTTT

300.1 210877. -193152.0 0.00036 0.00000 38.12 38.12
!------------------------------------ 4 ------------------------------------
SXFRST Hot heat exchanger
Heat = -36.051 (W) metal temp= 300.000 Kelvin

300.1 205749. -193181.4 0.00036 0.00000 2.07 37.19
!------------------------------------ 5 ------------------------------------
STKSC regenerator

80.0 140139. -181883.2 0.00004 -0.00005 2.07 7.13
!------------------------------------ 6 ------------------------------------
SXLASt cold heat exch
Heat = 5.033 (W) metal temp= 80.000 Kelvin

80.0 139875. -181568.9 0.00004 -0.00005 7.11 7.11
!------------------------------------ 7 ------------------------------------
UNION displacer cold end
Union P match difference= -7.559E-03 Pa; -1.890E-06 deg.

80.0 139875. -181568.9 0.00000 0.00000 0.00 0.00
!------------------------------------ 8 ------------------------------------
FREETARGETdisplacer U
FREET output = 6.200E-05

80.0 139875. -181568.9 0.00000 0.00000 0.00 0.00
!------------------------------------ 9 ------------------------------------
FREETARGETdisplacer phase
FREET output = -52.0

80.0 139875. -181568.9 0.00000 0.00000 0.00 0.00
!------------------------------------ 10 ------------------------------------
HARDEND the end
inverse impedance (rho a U/p A)=(-8.211E-09, 6.616E-09)

80.0 139875. -181568.9 0.00000 0.00000 0.00 0.00

The user might next generate cooling power curves by using the cold temperature target
as an independent plot variable and the cooling power as dependent plot variable; or the user
might explore the frequency dependence of the cooler, by using frequency as an independent
plot variable; or the user might want to add more realism to the model by including the
large dead volumes shown in the figure near the pistons. If inertial and viscous effects are
presumed negligible in those volumes, they can be modeled as COMPLIANCEs:

TITLE
BEGIN
COMPLIANCE

TBRANCH

81

IMPEDANCE (the displacer)
SOFTEND

SXFRST
STKSCREEN
SXLAST
COMPLIANCE
UNION (’connects’ to softend above)
HARDEND

The user will soon discover that this is a surprisingly robust model, considering the
large number of guesses and targets: the model tolerates steps in independent variables of
several percent without getting lost.

TBRANCH and UNION are intended for duct networks, where temperature is constant
and hence p1 and U1 are the variables of interest. For more complex systems, the segments
HBRANCH and HUNION are energy-conserving versions of TBRANCH and UNION. Use them if you
are branching at locations where Ḣ 6= Ẇ , such as at a branch to a second stage regenerator
within a two-stage pulse tube refrigerator. HBRANCH incorporates a potential guess Hfrac,
giving the fraction of the incoming enthalpy that goes into the branch. Use Hfrac as a
guess to hit a target down the branch, such as a temperature. HUNION incorporates an
additional potential target, that the temperature in the trunk at the union be equal to that
at the associated branch end.

C Turbulence

A turbulence algorithm can be enabled in ISODUCTs, INSDUCTs, ISOCONEs, and INSCONEs
by use of an otherwise hidden input parameter: parameter d (f for ’CONEs), the relative
roughness (roughness height divided by pipe diameter). Set the roughness equal to zero
for smooth walls, or to some small value greater than zero for rough walls. To ensure a
laminar calculation, set the roughness equal to −1 (which will cause the parameter to be
hidden once again).

The turbulence algorithm follows the spirit of the assumptions of Iguchi et. al. [Bull
JSME 25, 1398–1405 (1982)]. It assumes that oscillatory-flow losses can be calculated
by using the Moody friction factor (valid for steady flow) at each instant of time during
the oscillatory flow. This assumption has little experimental validation in the range of
Reynolds number and R/δν of interest in thermoacoustics, but we believe it provides a
useful estimate, better than no estimate at all. For more details, see Chapter VI.

82

D Variable Gas Mixtures

Several binary mixtures of gases have proven useful in thermoacoustic devices because of
their improved Prandtl numbers and the option to adjust the resonance by changing the
sound speed. DeltaE’s fluid library contains three such mixtures: He-Xe, He-Ar, and He-
Ne. These fluids are specified by a string on a line after a segment’s numerical parameters,
as are other fluids, but the string contains a 5 character field that represents the fraction of
helium in the mixture (for example, 0.981hexe or 0.889hear, containing 98.1% and 88.9%
helium, respectively).

If all but the first of the fluids (in the BEGIN segment) are specified using sameas 0

statements, it is possible to use the helium fraction of the mixture as an iteration variable
for resonance tuning. Simply select 0h from the (u)se menu option (it may instead be
a plot variable, if you choose). In the out file, the fluid written out will reflect the final
concentration used.

Our equations for He-Xe properties are not valid for Xe fractions in excess of 0.5.

E User-Defined Fluid/Solid

DeltaE has a provision that allows users to specify ‘external’ fluids or solids that are not
part of its internal library of thermophysical properties. Properties are derived, according
to current operating conditions, from Eqs. V.1, V.2 and V.3 (below) using coefficients read
from a user-written text file. Up to five distinct external fluids and five external solids can
be used at one time.

The file can have any name valid under the operating system under which DeltaE is
running, and it should end with the extension .tpf. If the root filename is the same as any
predefined fluids, DeltaE will replace its internal calculations for that fluid with those
given in the user file. To request a user-defined fluid, simply use the root file name as you
would any other fluid. The .tpf file should be in the same directory or folder as the model
file. The name of the fluid is set to the root filename of the external fluid file.

The file format is similar to the segment definitions we have used in models described
in previous chapters in that comment lines can be added with an initial ‘!’ and blank lines
are ignored. Each property is specified by a line containing 1–10 real coefficients which are
read in as C0−9, where unused trailing parameters are set to zero. It is critical that the
properties be arranged as shown: ρ, cp, K , a2, and µ. We also need the ratio of specific

83

heats, γ, and the expansion coefficient β, but these are calculated internally from

β = −1

ρ

∂ρ

∂T
and γ − 1 =

Tβ2a2

cp
. (V.1)

Each of the five properties is derived from its 10 coefficients using the following equation:

property = C0 + C1
pm

T + pmC2
+ C3T + C4T

2 + C5T
C6 + C7p

2
mT

C8 + pmC9, (V.2)

where T and pm are the absolute temperature (K) and mean pressure (Pa) for each point
at which a segment using the fluid is evaluated.

Equation V.2 is a compromise between simplicity and flexibility; it is intended for use in
a variety of simple expressions for gases and liquids and has a uniform syntax for specifying
all 5 properties. There is only a limited mean pressure dependence, suitable for nearly
ideal gases; for more complicated mean pressure dependence, multiple .tpf files should be
written for each mean pressure range used.

To illustrate the use of these coefficients, consider the example below. To replace the
(ideal) helium gas in a model with a more accurate representation that calculates density
and sound speed using the first coefficient of the virial expansion for helium, we can write
the following file, call it helium.tpf, and put it in the same directory as our model:

! external fluid; He with first virial coeff for (B=12cc/mole)
! Equation is:
! C0 + C1*pm/(T+C2*pm) + C3*T + C4*T^2 + C5*T^C6 + pm^2 *C7*T^C8 + pm*C9
! Density, rho (m^3):

0. 4.814e-4 1.44e-6
! isobaric heat capacity, cp (J/kg/K):

5192.
! Thermal conductivity, k0 (W/m/K):
0. 0. 0. 0. 0. 0.0025672 0.716

! Square of sound speed, a^2 (m^2/s^2):
0. 0. 0. 3461.92 0. 0. 0. 0. 0. .0100

! Viscosity, mu (kg/s/m):
0. 0. 0. 0. 0. 0.412e-6 0.68014

The coefficients for density were determined using

ρ =
pmM

R(T + Bpm/R)
,

where R = 8.314 J/mole-K, M = .0040026 kg/mole, and the first virial coefficient B =
1.2× 10−5m3/mole. We set C1 = M/R and C2 = B/R. For squared sound speed, we need
to satisfy

a2 =
γRT

M

(
1 + 2

Bpm
RT

)
,

84

so we set C3 = γR/M , and C9 = 2Bγ/M , where γ = 5
3 . See section C.1 in Chapter VI to

compare this with how helium properties are calculated in DeltaE’s internal routine.

For equations that cannot be manipulated to fit the format of Eq. V.2, we suggest
generating a table of data near the expected operating conditions and using curve-fitting
tools to generate appropriate coefficients.

User-defined solids follow an identical format, except that only the first three lines are
required to specify ρs, cs, and Ks. The meaning of coefficients C1 and C2 are also redefined
to provide an exponential capability, so the equation for solids is

property = C0 + C1 exp(−TC2) + C3T + C4T
2 + C5T

C6 + C7p
2
mT

C8 + pmC9. (V.3)

It is a good idea to check each new external fluid or solid by using the (t)hermophysical
command available in the main menu (external fluids or solids show up first and are selected
with negative integers). Users can also insert the special THERMophysical segment using
the fluid/solid to display the properties in the .out and .dat files, or to plot them (see
below).

F Parameter Linking (Special Modes)

DeltaE is versatile in the way it uses different model parameters as guesses to meet
its targets: length or volume (to achieve resonance at fixed frequency), stack length and
position (to meet an efficiency and amplitude), or stack diameter (to get adequate power),
for example. When such geometric variables are released to the solver for manipulation (or
when they are made to change in a plot loop), there are often certain geometric relationships
to other parameters that we would like to see maintained. For example, if the area of a
duct increases, we must increase the associated perimeter as well. Another common wish
is to lengthen a segment while simultaneously shortening another segment to keep overall
length constant. Also, in a stack made of a constant thickness material in a duct of fixed
diameter, we cannot blindly vary the pore size and expect the porosity to remain the
same—this could lead to a misleading optimization if we are faced with these constraints.
If we go to the trouble to calculate a porosity for our initial segment, we want DeltaE to
respect it for the values it chooses as we run the model. ‘Special modes’ were introduced
to link parameters for just these purposes.

A special modes dialog appears automatically whenever a parameter linking capability
is possible for a variable that is chosen as a guess vector member:

MAIN: (rpwPncTCgudvomfst e?)> u

85

Guess/Target Address=? (0a) 4d
Selection: STKCIR:r0

Add to the guess vector (y/n)? y
Special modes can be enabled as this parameter is varied
(Only one mode per segment possible):
Mode Description

0 Normal mode (no inter-related parameters)
-1 Adjust porosity while y0(r0) varies (const. Area, L0)

Mode=? (0) -1

By selecting -1 for the special mode, we have asked DeltaE to remember the following
constant before it begins iterating:

const = r02/poros− r02

where r0, poros are the pore size and porosity of our initial stack. We assume that the
effective plate material half-thickness is L0 = r02(1/poros−1). During the iteration, as r0
is changed, DeltaE assumes porosity changes as an ideal porosity would and calculates it
from the following:

poros = r02/(r02 + const),

and the effective plate thickness is maintained.

If we create a plot varying the area of our first INSDUct (parameter 2a, in most of the
examples of the previous chapters), the dialog looks like

MAIN: (rpwPncTCgudvomfst e?)> p
define plot variables. One or two inputs (a-j)
and up to 10 outputs (A-J) can be plotted)
Plot Parameter Address=? (0A)2a

use for outer or inner (2d) plot loop (o/i)? o
Outer (or 1-D) Plot Loop:
Independent variable is ISODUC:Area
Plot begins at ISODUC:Area = 1.2920E-02 m^2
New value (<CR> to keep)=?
Plot ends at ISODUC:Area = 1.2920E-02 m^2
New value (<CR> to keep)=? 2e-2
with a step of: 1.00
New value (<CR> to keep)=? 1e-3
Special modes can be enabled as this parameter is varied
(Only one mode per segment possible):
Mode Description

0 Normal mode (no inter-related parameters)
-2 Maintain consistent Perimeter as initial Area varies

Mode(n)=? (0)-2

By selecting -2 for the special mode, we have asked DeltaE to remember the constant:

const = perim2/area

86

and, later, to calculate the perimeter from

perim =
√
area ∗ const.

This relationship keeps circular ducts circular and maintains the aspect ratio of rectangular
ducts.

A very complicated example, even if somewhat confusing, can give some idea of the
power of parameter linking. Interesting iterations can be done by using sameas parame-
ters in combination with length parameter linking. For example, if segments 2 and 7 are
ISODUcts, and segments 4 and 5 are STKSLabs of equal length (but different material or
porosity, perhaps), we can iterate using stack length, keep these lengths equal, and keep
the overall length and stack center position constant by doing the following:

1. For the length (c) of segment 5, specify sameas 4c.

2. (u)se parameter 4c as a guess (you will have to clear another guess, or add a suitable
target, to keep your guess and target vectors balanced).

3. When prompted to select a special mode for segment 4, choose ‘2’ to keep the sum
of segment 2 and 4’s lengths constant.

4. Using the (s)pecial modes editing option, select parameter 5c and set its mode
to ‘7’.

If 4c were an independent plot loop variable instead of a guess vector member, the
procedure above would be identical, except that item (2) would be a (p)lot selection
option instead of a (u)se dialog. The following is a list of all parameter linking modes and
the segment types for which they are available:

n Keep Length + Length in segment (n) constant: All segments with length.

0 Normal mode (no inter-related parameters): All segments

-1 Adjust porosity while y0(r0) varies (const. Area, L0):] Most stacks and heat exchangers.

-2 Maintain consistent Perimeter as initial Area varies: Ducts and cones.

-3 Maintain consistent Perimeter as final Area varies: Cones.

-4 Adjust porosity as L0 varies (const. Area, y0): STKSLab.

-5 Maintain consistent surface area as volume varies: COMPLiance.

-6 Maintain constant V & valid perim., area as length varies: STKDUct

87

-7 Vary imaginary part to preserve magnitude (where possible): IMPED, BRANCh, TBRANch,
and HBRANch.

-8 Vary imaginary part to preserve phase angle:] same as -7.

G Thermophysical Properties

The (t)hermophysical menu selection (see Chapter VI for further details) allows the
user to have keyboard access to the library of fluid and solid properties for a given state
(which defaults to the current temperature, pressure, acoustic frequency, and fluid or solid).
This feature has proven so convenient that we often start DeltaE simply to look up the
transport properties of gases. (For this purpose, it is often useful to have a dummy file
present (e.g,. nil.in) that contains only a TITLE line. If you respond to the input file
prompt with this filename, DeltaE will quickly go to the menu line and allow you to
access the options.)

A companion to the (t)hermophysical menu selection is THERMophysical segment
type, which takes no input parameters except for the fluid and solid type (again, see
Chapter VI for a summary). This segment can be inserted anywhere in a model where the
user wants to know the fluid and solid properties at the local temperature and pressure,
whatever they may be at the time. Both the .out and .dat files contain outputs for these
properties where the segment is inserted. By using the plotting loops, tables of properties
can be generated over ranges of temperature, pressure, or frequency by varying these values
in a BEGIN segment, ending the model with a THERMophysical segment, and plotting as
many of the outputs as are required.

H State Variable Plots

State variable plots allow you to view the distribution of temperature, pressure, and en-
thalpy along the entire length of a model. The format is somewhat similar to that of the
*.dat file, but with more detail. Selecting (G)enerate state variable plot from the
(E)xtras submenu will cause a *.spl file to be written. The output below was generated
from the 5inch.in example file (section III.B) before guess and targets were added, and
before iterations were performed:

->5INCH.spl
!Created@12:55:56 16-JUN-97 with DeltaE Vers. 3.6b3 for the Power Macintosh
-= Five-Inch Thermoacoustic Engine =-

Seg# x(m) GasA(m^2) T(K) Re[p](Pa) Im[p](Pa) Re[U] Im[U](m^3/s) Hdot(W)

88

1 0.000 0.012920 500.0 80000.0 0.0 0.00000 0.00000 0.00
1 0.000 0.012920 500.0 80000.0 0.0 -0.00003 0.00000 -1.20
2 0.000 0.012920 500.0 79992.8 0.1 -0.00006 -0.00790 -1.20
2 0.056 0.012920 500.0 79935.6 0.6 -0.00011 -0.02371 -1.20
2 0.112 0.012920 500.0 79821.2 1.6 -0.00016 -0.03949 -1.20
2 0.167 0.012920 500.0 79649.7 3.0 -0.00021 -0.05525 -1.20
2 0.223 0.012920 500.0 79421.2 4.7 -0.00026 -0.07096 -1.20
2 0.279 0.012920 500.0 79285.7 5.8 -0.00029 -0.07880 -11.65
3 0.279 0.005078 500.0 79285.7 5.8 -0.00029 -0.07880 -11.65
3 0.339 0.005078 500.0 78318.1 403.1 -0.00184 -0.08697 2198.55
4 0.339 0.010465 500.0 78318.1 403.1 -0.00184 -0.08697 2198.55
4 0.395 0.010465 428.8 77731.7 847.5 0.00166 -0.09753 2198.55
4 0.451 0.010465 375.9 76965.8 1289.3 0.00455 -0.10886 2198.55
4 0.506 0.010465 334.6 76002.3 1733.3 0.00702 -0.12056 2198.55
4 0.562 0.010465 300.9 74822.6 2182.1 0.00920 -0.13236 2198.55
4 0.618 0.010465 272.8 73407.8 2636.4 0.01117 -0.14405 2198.55
4 0.618 0.010465 272.8 73407.8 2636.4 0.01117 -0.14405 2198.55
5 0.618 0.006158 272.8 73407.8 2636.4 0.01117 -0.14405 2198.55
5 0.669 0.006158 272.8 71193.4 2996.3 0.01045 -0.15121 145.54
6 0.669 0.012670 272.8 62577.4 2479.4 0.01377 -0.23637 145.54
6 1.400 0.012670 272.8 35543.1 1109.6 0.01814 -0.36310 145.54
6 2.130 0.012670 272.8 684.6 -470.2 0.01887 -0.40988 145.54
6 2.861 0.012670 272.8 -34324.0 -1945.9 0.01584 -0.36643 145.54
6 3.592 0.012670 272.8 -61775.6 -3026.3 0.00967 -0.24231 145.54
6 4.323 0.012670 272.8 -70673.7 -3347.8 0.00579 -0.15799 60.00
7 4.323 0.012670 272.8 -70673.7 -3347.8 0.00579 -0.15799 60.00
7 4.323 0.012670 272.8 -70673.7 -3347.8 0.00580 -0.15799 59.46

The following features of state variable plots are noted:

• When generating a state variable plot, DeltaE does not iterate; it simply takes one
pass through the model using the current guess variable values.

• During the pass, DeltaE prints Nint/2 + 1 (Nint is the number of Runge-Kutta
steps—see section J for details) lines of data for each segment that it knows how to
integrate (stacks, ducts, and cones).

• Two lines are printed for elements which do direct calculations (heat exchangers,
endcaps, etc.): one before, and one after the segment is computed.

• Segments that do not have any physical effect, such as freetargets, BEGIN, and’END
segments, generate no output in the plot.

• The third column, GasA, is the current cross-sectional area times the porosity of the
segment.

• Work is not an output, but, in a spreadsheet, it can be derived from the plotted
variables using Ẇ = <[p1Ũ1]/2

• when a model contains a branch segment, a blank line will be left before and after
the branch in the output. Also, the x distance counter begins at zero again in the
branch.

89

I Geometry

When sizes are changing dynamically, it is often desirable to know something about the
physical size and layout of a device under design, no matter how abstract the available
information may be. DeltaE has an option to write a ‘geometry’ file for this purpose.
Selecting it causes a geo file to be written that contains X-Y pairs suitable for plotting with
your favorite graphics software. When this file is given to graphing software, the resulting
plot is representative of a half cross-section of a cylindrical device similar to the model.
The figure below is an annotated plot made from the geometry file for our final example of
the Hofler refrigerator:

0.10

0.08

0.06

0.04

0.02

0.00

'R
ad

iu
s'

 (
ar

b
it

ra
ry

)

0.40.30.20.10.0

Length (m)

HXLASt(5)HXFRSt(3)

VSPEAker(1)

STKSLab

HARDEnd(9)

COMPLiance(8)

INSCOne(7)

Figure V.3: Geometry of Hofler refrigerator example.

We have labeled all of the segments, except for the ducts, with their numbers and
types. DeltaE generates little ‘tick’ marks to identify the breaks between segments. The
lines down to zero on either end are generated by the VSPEAker and HARDEnd segments,
respectively. The height at most points is proportional to the square root of the area.
The COMPLiance is the exception; it looks nothing like Hofler’s sphere. It is a symbolic
cylinder that has length equal to radius (sort of—factors of π are ignored) proportional to
the specified volume. (Some models, such as those with active branches, are not supported
properly by geometry files yet.)

90

J Tuning and Debugging

The (T)olerances/debugging menu selection gives the user access to a number of internal
parameters that control the quantity of output and diagnostic information generated and
the way that the solver approaches the iterations it will perform. An explanation of these
parameters is given below:

Nprint If Nprint ≤ 0, the .dat file will contain only the final converged iteration of
the model. Otherwise, DeltaE saves every Nprintth intermediate iteration. If
Nprint ≥ 0, intermediate steps in every stack integration are included in the data
file. For Nprint > 0, every segment is displayed to the screen (equivalent to typing
the .out file). This can be useful in finding model errors that cause DeltaE to
crash before the first converged data point is ever stored. If Nprint < 0, a concise
iteration summary line is printed every -Nprint+1 intermediate iterations. By setting
Nprint to a larger negative integer, time-consuming screen output can be reduced,
which will make calculations run several times faster on machines with good floating
point performance. The summary line contains only the iteration number and the
root-mean-square sum of the errors (targets − results), and the line will overstrike
itself. If Nprint = 0, the iteration count and the complete guess and (target−result)
vectors are displayed on sequential lines. Default: -1.

PlotDat This variable controls output generated during plots, where multiple solutions
are processed sequentially. If PlotDat ≥ 0, all error messages are that occur when
DeltaE has doubts about the convergence of a datapoint are announced (on a Mac-
Intosh, ‘OK’ must be clicked in the alert box before calculations will continue. For
other values of PlotDat, DeltaE will continue silently, but will still write the mes-
sages to the .dat file and mark the lines in the .plt file with a ‘∗.’ If PlotDat ≥ 1,
all converged endpoints are written to the .dat file (it can become quite large!). For
PlotDat = 0, only the most recent is kept. Default: 0.

tolerance Recommended range: 1.5e-7–1.e-2. This value governs the point at which
DeltaE considers its iterations finished. The default value is close to the limit that
can be reached using single-precision arithmetic (all DeltaE calculations are double
precision). This value does not relate directly to errors between any particular result
and its target value; it concerns changes in the norm of the error vector. Default:
1.00E-05.

Runge-Kutta steps This is an even integer that determines the number of integration
steps used to span each stack-type segment, turbulent duct, or cone. It does not
affect other segment types. It also determines the resolution with which state variable
plots (the (G)enerate option described in the preceding section) are printed: Nint/2
lines per segment. Larger values will cause a slower, more accurate computation.

91

Small values will increase speed at the price of integration accuracy, but may cause
convergence problems if the specified tolerance is too small. Output from every other
step can be enabled with the Nprint parameter. Default: 10.

Normalization mode In a numerical problem where all of the input variables in the guess
vector and all of the output variables used in the target vector are of wildly different
magnitudes, a difficulty arises in choosing how much to change each variable and how
much to weigh the errors between the target and the result values. Particularly, this
affects HARD- and SOFTEnd segments. A 0.01 K error in a heat exchanger temperature
is fairly benign to us, but in the complex end impedance, an error of 0.01 could leave
us with hundreds of watts of power flow where there must be zero. In the standard
mode (1), DeltaE uses the solver’s internal method to normalize the solution vector,
which usually does a reasonable job. For pathological cases, DeltaE has a special
mode (2) that tries to normalize all input variables and output variable differences
to unity. This can present its own problems, however, since we do not know how to
normalize zero input variables (phases are a special case, automatically normalized
by 360o). In normalizing outputs, problems can occur if the model is very far from
being converged, giving large initial error values; if it is very close to being converged,
the errors could be near zero, presenting the other problem. Use mode 1 whenever
possible, and mode 2 when you must. It may sometimes help to specify a zero input
(target or guess) variable as some tolerably small nonzero number when using this
mode. Default: 1.

Step bound factor recommended range: 0.01–100. This value regulates the size of initial
excursions DeltaE makes from initial guesses to find the directions in which it must
iterate. Some difficult cases can benefit by reducing this value. Default: 100.0.

FCNerr There is a limit to the accuracy with which a computer can calculate the ‘function’
that represents one complete pass through a model. The assumed value of this error
affects the increments between iterations that the solver will choose; if the increments
are too small, the effect on the result will be unpredictable. Larger values of FCNerr
can speed iterations, with a less accurate endpoint. Too small a value can cause the
solver to lose its way completely. This quantity is system-dependent, and it may be
necessary to increase it slightly for very complex models. Recommended range: >
5.e-15. Default: 1.00E-10.

Minimum Temperature There is a temperature floor, 10 K by default, to prevent DeltaE’s
solver from exploring unphysical temperatures such as negative temperatures. Brave
users with special needs at lower temperatures (and generally with their own, exter-
nal thermophysical properties files!) can set this floor to a lower value. (Some of
DeltaE’s internal fluids use a higher temperature floor. He-Ar mix, for example,
does not calculate properties below 70 K in order to prevent unreasonable values from
being generated).

92

Plot field delimiter Normally, DeltaE generates plots and state variable plot files
with the numbers in fixed with columns. Some spreadsheets and plotting packages
do not process these files as well as they do delimited text. If plot f sep is set to
—texttt1, a comma will be placed between columns in each of these plot types.

J.1 Initialization files.

If any of the above parameters are modified from their default values, you will generally
want to keep the new values for every new run on the current model, and reuse them every
time you execute the program. Therefore, whenever the (T)olerances/debugging option
is used to change the default settings, all of the tunable parameters are written to a special
file when the model is saved. This file has the same base filename as the model, with the
extension ini. Whenever a new model is loaded, DeltaE checks for a .ini file in the
same directory with a matching base filename and loads these settings if it is found. This
file is written in NAMELIST format which makes it easy to examine and modify using any
text editor.

Frequently, a collection of similar models will reside in a single subdirectory, and these
files will share identical custom settings. For these situations, any .ini file can be copied
(or renamed) to default.ini and DeltaE will use the settings within it for any model
run from the same directory, If a model has its own individual .ini, its settings will take
precedence.

93

94

Chapter VI

Reference

A General

DeltaE solves the one-dimensional wave equation, with temperature evolution, in the
usual low-amplitude, “acoustic” approximation. It does not allow superposed steady flow,
nor does it include nonlinear effects.

In each pass, DeltaE integrates from BEGINning to HARDEnd or SOFTEnd, with respect
to 5 real variables: real Tm(x), complex p1(x), and complex U1(x). It uses the differential
(or simpler) equations appropriate for each segment, with the evolution of these variables
in each segment controlled by local parameters, such as geometry and energy flow, and
global parameters, such as frequency and mean pressure. Continuity of Tm, p1, and U1 are
used at the junctions between segments.

In general, a pass of DeltaE’s integration does not result in desired values of all
variables. A shooting method is used to adjust chosen initial variables, called ‘guesses,”
in order to hit desired results, called “targets.” Initial guesses are provided by the user, or
(more commonly) by a previous run of DeltaE.

The table below serves as a guide to choice of guess and target variables:

95

Variables we think of as Variables we think of as
fixed (including independent results (any of these
variables in plots) can be plot results)

Inputs for each pass of
DeltaE. Includes T-begin,
p-begin, U-begin, p-mean,
freq, all dimensions, ’ducer
coefficients, volts @VDUCEr,
heat @HXFRSt, HXMIDl,
gas concentration.

simply fixed in input file guess

Results from each pass of
DeltaE. Includes all T , p,
U except in BEGIN; heat
@HXLASt; current in
VDUCErs; combinations of
above such as COPRTarg,
DIFFTarg, Z at ends.

target
simply results in .out

and .dat files

B Segments

All of DeltaE’s segment types are listed by functional grouping in this section. An
alphabetical listing and cross-reference is presented at the end of the section.

B.1 Ducts, cones

Segment types: ISODUct, INSDUct, ISOCOne, INSCOne

Sample input-file segments:

ISODUCT comments typed here are retained in output
3.14e-4 m2 area
0.0628 m perim
0.1 m length
helium gas
copper solid

96

ISOCONE this one is square1.0 m2 Initial Area4.0 m In Perim2.0 m Length0.25 m2 Final area2.0 m Final perimair gas
ideal solid

INSDUct and INSCOne use same formats as ISODUct and ISOCOne, respectively.

Use:

Use for ducts and cones of any cross-sectional shape (e.g., square, circular) by giving suitable
area and perimeter.

Computation algorithm:

In ducts, p1(x) propagates according to

pout(x) = pin cos kx+ (p′in/k) sin kx,

p′out(x) = −kpin sin kx+ p′in cos kx, where p′ = dp/dx. (VI.1)

with complex wavevector k, given by

k =
ω

a

√
1 + (γ − 1)fκ/(1 + εs)

1− fν
. (VI.2)

A cylindrical geometry is assumed for fκ and fν so that

fκ =
2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ]
, fν =

2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ]
. (VI.3)

Also,

εs =

(
Kρmcp
Ksρscs

)1/2

. (VI.4)

In cones, p1 propagates according to the lossy Webster horn equation:

[
1 +

γ − 1

1 + εs
fκ

]
p1 +

a2

ω2

1

A

d

dx

[
(1− fν)A

dp1

dx

]
= 0. (VI.5)

The perimeter varies linearly from its initial value to its final value; area varies quadratically.
Hence, circular cones have circular cross-sections everywhere, with diameter varying linearly
with axial position.

97

In very narrow cones (or ducts), fκ and fν are calculated using complex Bessel functions
for R/δ < 25(Eq. V I.3). Where R/δ > 30, the boundary-layer approximation is used. For
intermediate values, linear interpolation is used to make a smooth match between the two
regimes. While the narrow duct solution assumes a circular cross-section, the shape of the
duct is irrelevant in the boundary-layer approximation. A square duct with dimensions
much larger than pentetration depth can be modeled simply by choosing perimeter =
4
√

area, for example.

In ISOthermal ducts and cones, Ḣ = Ẇ everywhere. This assumes that the duct/cone
is thermally anchored, so power dissipation is carried away externally. Thermoacoustic
heat transport along the perimeter, which in fact contributes a small difference between Ḣ
and Ẇ , is neglected.

In INSulated ducts and cones, the power dissipation is deposited in the adjacent heat
exchanger. If several INSDUcts and/or INSCOnes are strung together, the power dissipated
in all of them should show up in the nearest heat exchanger. This feature of DeltaE is not
yet fully bugproof. For example, a BRANCh between a heat exchanger and INSDUct ruins
the thermal link; initial ENDCAps do not share the thermal link to the heat exchangers; and
nonzero real targets in SOFTEnd and HARDEnd cause INSDUct to give nonsense. Use with
caution. If results look unreasonable, they are.

(See also STKDUct, which allows a temperature gradient along a duct. It is described
under Stacks below.)

Turbulence extensions:

DeltaE’s turbulence algorithm assumes that turbulent oscillatory flow is described by
the Moody friction factor at each instant of time during the oscillatory flow. [See any
engineering fluid mechanics textbook to review the Moody friction factor as a function
of Reynolds number and relative roughness of the pipe wall.] This assumption must be
excellent in the low frequency limit, in which R/δν −→ 0. This limit is approached in many
inertances for pulse tube refrigerators. We do not know how good the assumption is for
large R/δν , which is of interest in the resonators of standing-wave thermoacoustic systems.
For experimental validation of the assumption for intermediate R/δν , see Iguchi et al., Bull.
JSME 25, 1398–1405 (1982).

DeltaE’s turbulence algorithm can be enabled only in ISODUCTs, INSDUCTs, ISOCONEs,
and INSCONEs. To do so, include (or (m)odify, from within the program) parameter d in
the ’DUCT segment in the input/output file (use parameter f for ’CONEs). Parameter d is
the relative roughness ε, whose definition can be found in fluid mech textbooks: roughness
height divided by pipe diameter. A typical value might be 10−3. Setting this parameter

98

equal to minus one makes that line of the input/output file disappear, returning the ’CONE

calculation to laminar.

A sample of a modified duct segment, with turbulence enabled, is given below. (For
comparison, this is the final duct of the “5-inch engine” that was given in Section III.B.
The area of the duct has been reduced so that it becomes turbulent over most of its length.)

!--------------------------------- 6 ---------------------------------
ISODUCT Cold Duct
4.0000E-03 a Area m^2 1.1129E+05 A |p| Pa
0.2220 b Perim m (-2) -176.6 B Ph(p) deg
3.650 c Length m 2.7085E-05 C |U| m^3/s

1.0000E-04 d Srough -176.7 D Ph(U) deg
1.507 E Hdot W

helium Gas type 1.507 F Work W

The portion of the .dat file corresponding to the above duct segment is as follows:

!------------------------------------ 6 ------------------------------------
ISODUCT Cold Duct
Re=0.29E+06, r/dn= 210.7, m= 1.1574, m-prime=0.9987 at start;
Re=0.39E+06, r/dn= 210.7, m= 1.4568, m-prime=0.9970 peak @x= 1.2775
End of this segment is laminar.

Heat extracted: 137. Watts
306.6 -111099. -6592.1 -0.00003 0.00000 1.51 1.51

We note that losses in this duct have increased to 137 W (“Heat extracted”), but there
are also three new lines in the listing. The parameters given in the first two lines are
Reynolds number (referenced to diameter), the ratio of radius to viscous penetration depth
δν, the dissipation multiplier m, the inertial multiplier m′ (see below), and the location
along the duct. The third line says that velocities return to a laminar regime before the
end of the duct. If the peak Reynolds number occurs at either end of the duct, or if the
entire duct is laminar, the middle line detailing the peak location will be omitted.

The volumetric velocity and hence Reynolds number NR vary sinusoidally in time;
hence, the instantaneous Moody friction factor fM has a complicated time dependence.
We simplify this time dependence by essentially using a Taylor-series expansion around the
peak Reynolds number:

fM(t) ' fM +
dfM
dNR

NR

|U1|
(
Re

[
U1e

iωt
]
− |U1|

)
, (VI.6)

where fM and the derivative on the right-hand side are evaluated at the peak Reynolds
number. It is then straightforward to integrate the instantaneous power dissipation over a

99

full cycle, obtaining for the time-averaged power dissipation per unit length

dĖ

dx
=

ρ |U1|3

3π3R5

[
fM − (1− 9π/32)NR

dfM
dNR

]
, (VI.7)

where the quantities in the square bracket are evaluated at the peak Reynolds number.

When this is compared to the equivalent result for laminar flow

dĖ

dx
=

ρ |U1|2 ω
2πR2

Re
[

i

1− fν

]
, (VI.8)

it is apparent that turbulence multiplies the dissipation by a factor m given by the ratio of
the two expressions above:

m =
δ2
νNR

6πR2

[fM − (1− 9π/32)NR dfM/dNR]

Re [i/ (1− fν)]
. (VI.9)

DeltaE evaluates fM and dfM/dNR as a function of Reynolds number and ε using the
iterative expression

1√
fM

= 1.74− 2 log10

(
2ε+

18.7

NR

√
fM

)
, (VI.10)

which is a remarkably good approximation to the Moody friction factor [R. M. Olson,
Essentials of Engineering Fluid Mechanics]. To account for turbulence, DeltaE increases
the resistive component of the pressure gradient, and hence the viscous power dissipation,
by m. It decreases the inertial pressure gradient by

m′ =

(
1− δν/R

1− δν/mR

)2

(VI.11)

to correct approximately for the steeper velocity gradient at the wall, which increases the
effective area open to gas contributing to inertial effects. It also multiplies the thermal
penetration depth by m, in an attempt to account very approximately for changes in
thermal relaxation losses due to increased heat transfer. Both m and m′ are displayed in
the *.dat file.

At low enough velocities, m −→ 1 and DeltaE reverts to a laminar calculation. The
m = 1 boundary between laminar and turbulent zones in DeltaE occurs roughly at

NR ' 2000 for R/δν < 2, (VI.12)

NR

R/δν
' 1000 for R/δν > 2. (VI.13)

100

DeltaE versions prior to 3.3 had a simpler turbulence algorithm, which was adequate
for standing-wave resonators but not for the Reynolds numbers and R/δν ’s found in in-
ertances for pulse-tube refrigerators. That algorithm was enabled by setting perimeters
negative instead of positive in ’CONES. If you still have old DeltaE output files with nega-
tive perimeters, the current version of DeltaE should be able to read and interpret them;
it will save them in the new format.

B.2 Lumped elements: compliance, endcap, impedance

Segment types: COMPLiance, ENDCAp, IMPEDance

Sample input-file segments:

ENDCAP a surface with thermal dissipation
1.134e-3 m2 Area
SAMEAS 0 Gas
ideal solid

COMPLIANCE this one is a sphere
0.1257 m2 Area
4.19e-3 m3 Volume
0.859hexe Gas
nickel solid

IMPEDANCE just a lumped series impedance
1.0 Pa-s/m3 Re(Z)
-0.2 Pa-s/m3 Im(Z)
helium

! Blank lines at "solid" location are interpreted as "ideal" solid

Use:

An endcap is a surface area with thermal dissipation. It always absorbs work. A compliance
is exactly that: a lumped acoustic volume element with surface thermal dissipation. An
impedance is a lumped series complex impedance.

Computation algorithms:

An endcap does not affect pressure amplitude; volumetric flow changes according to

Uout = Uin −
ωp

ρa2

γ − 1

1 + εs
A
δκ
2
,where εs =

(
Kρmcp
Ksρscs

)1/2

. (VI.14)

101

Pressure p1 is unchanged by a compliance; volumetric flow changes according to

Uout = Uin − i
ωp

ρa2

[
V − i

γ − 1

1 + εs
A
δκ
2

]
. (VI.15)

At an impedance, volumetric velocity is unchanged; pressure changes according to pout =
pin − ZU.

B.3 Transducers, branches

Segment types: BRANCh, OPNBRanch, PISTBranch, VDUCEr, IDUCEr, VSPEAker,

ISPEAker, VEDUCer, IEDUCer, VESPEaker, IESPEaker

Sample input-file segments:

BRANCH
1 Pa-s/m3 Re(Z)
1. Pa-s/m3 Im(Z)
0.500hear
ideal Z
OPNBRANCH
.05 Pa-s/m Re(Z)/k^2
.2 Pa-s/m2 Im(Z)/k
air

PISTBRAN Baffled Piston
.05 Radius m
air

VDUCER
1.000E-09 a Re(Ze) ohms
.000 b Im(Ze) ohms

1.000E+04 c Re(T1) V-s/m^3
.000 d Im(T2) V-s/m^3

-1.000E+04 e Re(T2) Pa/A
.000 f Im(T2) Pa/A

1.000E-09 g Re(Zm) Pa-s/m^3
1.000E-09 h Im(Zm) Pa-s/m^3
10.0 i AplVol V

SAMEAS 0 Gas type
ideal Solid type V

VEDUCER Enclosed driver
1.000E-09 a Re(Ze) ohms
.000 b Im(Ze) ohms

1.000E+04 c Re(T1) V-s/m^3
.000 d Im(T2) V-s/m^3

102

-1.000E+04 e Re(T2) Pa/A
.000 f Im(T2) Pa/A

1.000E-09 g Re(Zm) Pa-s/m^3
1.000E-09 h Im(Zm) Pa-s/m^3
10.0 i Vin V
45.0 j Ph(Vin) deg

SAMEAS 0 Gas type
ideal Solid type

IDUCEr or IEDUCer: same as VDUCEr or VEDUCer, except that current appears in line i (and
phase of it on line j for enclosed units) instead of voltage.

VSPEAKER
6.000E-04 a Area m^2
6.00 b R ohms
.000 c L H
8.00 d B x L T-m

5.000E-03 e M kg
.000 f K N/m
.000 g Rm N-s/m

-22.5 h AplVol V
SAMEAS 0 Gas type
ideal Solid type

VESPEAKER
6.000E-04 a Area m^2
6.00 b R ohms
.000 c L H
8.00 d B x L T-m

5.000E-03 e M kg
.000 f K N/m
.000 g Rm N-s/m

62.0 h Vin V
-37.2 i Ph(Vin) deg

SAMEAS 0 Gas type
ideal Solid type

ISPEAker or IESPEaker: same as VSPEAker or VESPEaker, except that current appears in
line h (and phase of it on line i for enclosed units) instead of voltage.

Use:

BRANCh, OPNBRanch, and PISTBranch are side branches with fixed impedances. With
BRANCh, the user specifies the real and imaginary parts of the impedance, assumed inde-
pendent of frequency. OPNBRanch and PISTBranch incorporate the frequency dependence
of radiation impedance. Thus radiation impedance at the end of an open tube radiating
to 4π solid angle can be modeled as an OPNBRanch followed immediately by a HARDEnd.

103

V

xU

br
U = P

Z

U in outU U in outU

I

P P

Figure VI.1: BRANCH (left) and branched ’DUCER or ’SPEAKER (right).

V

U

I

Pi n Pout

Figure VI.2: Enclosed ’EDUCer or ’ESPEaker.

PISTBran approximates the radiation impedance of a baffled piston of the given radius in
radiating into the specified fluid.

The ’DUCErs and ’SPEAkers are electroacoustic transducers. ’DUCErs have frequency-
independent parameters; ’SPEAkers let the user specify mass, spring constant, force con-
stant, resistance, and inductance, so that frequency-dependent (even resonant) transducers
can be modeled. With IDUCEr and ISPEAker, the user specifies the (real) current, and
each pass of DeltaE calculates the (complex) voltage; with VDUCEr and VSPEAker, the
user specifies voltage, and DeltaE computes current. IDUCEr and ISPEAker cannot be
used with zero mechanical impedance because this would lead to a division of zero by
zero (see below). Hence, use VDUCEr or VSPEAker for resonant or massless-and-springless
transducers.

’SPEAker-type segments incorporate dissipation losses over their area as if they included
an ENDCAp, but ’DUCEr-type segments, which have no area parameter, do not. Enclosed
’ESPEaker-type segments include dissipation losses for both sides of the driver.

Branched transducer elements, which require only magnitude of voltage or current ap-
plied as an input, effectively anchor the phase to zero for that parameter. The phase of
pressure or velocity, as given in the BEGIN statement, must be varied in accordance with
this reference. This effectively limits a model to only one V or ISPEAker (or ’DUCEr), unless
they are exactly in phase. Enclosed transducers, however, have a phase input which allows

104

them to be used together, or where the phase reference is determined by a BEGIN statement,
for example.

Computation algorithms:

A branch is a side branch with complex impedance Z . Pressure is unchanged, but volu-
metric velocity changes according to Uout = Uin − p/Z. For an open branch, the numbers
in the input file are multiplied by (ω/a)2 and ω/a respectively to obtain the impedance.
For a baffled piston of radius r where the wavenumber is k = ω/a locally, the PISTBran

radiation impedance is given by

Zrad =
ρa

A

(1− 2J1(2kr)

2kr
+ i

(
4/π
2kr +

√
8/π sin(2kr−3π/4)

(2kr)3/2

)
If 2kr > 2.68

(4/π)2kr
3

(
1− (2kr)2

15

)
otherwise

 (VI.16)

A branched transducer IDUCEr, VDUCEr, ISPEAKer, VSPEAKer is an object attached
as shown in the figure like a branch impedance, but obeying the complex equations V =
ZeI + T1Ux , p = T2I + ZmUx. Pressure is unchanged, but volumetric velocity changes
according to Uout = Uin − Ux.

There are three cases of interest for a branched transducer:

1. If an electrical load impedance Zext is hung on the transducer, it should be covered
using a BRANCH segment, with Zbranch = p/U = Zm − T1T2/(Ze + Zext) .

2. If current I is given (and we take its phase to be real), then Ux = (p − T2I)/Zm and
V = ZeI + T1Ux .

3. If voltage V is given (and we take its phase to be real), then I = (ZmV −T1p)/(ZeZm−
T1T2) and Ux = (V − ZeI)/T1 .

An enclosed transducer IEDUCer, VEDUCer, IESPEAker, VESPEAker is an object at-
tached in series with other segments, as shown in Fig. VI.2. Volumetric velocity is nearly
unchanged (except for surface thermal losses—see below), but pressure is changed by
the force exerted by the transducer, obeying the complex equations V = ZeI − T1U1 ,
pout − pin = T2I − ZmU1.

There are three cases of interest for an enclosed (series) transducer:

1. If an electrical load impedance Zext is hung on the transducer, it should be covered
using an IMPEDANCE segment, with Zimp = Zm − T1T2/(Ze + Zext) .

105

2. If current I is given, then pout = pin + T2I − ZmU1 and V = ZeI − T1U1 .

3. If voltage V is given, then I = (V + T1U1)/Ze and pout = pin + T2I − ZmU1 .

In the case of speakers, Ze = R + jωL ; T1 = −T2 = Bl/A ; Zm = Rm/A
2 + j(ωm −

k/ω)/A2 . Thermal surface losses are computed for area A using the same formula as for an
ENDCAp. Branch speakers are assumed to have area A exposed to the oscillating pressure.
Enclosed speakers have area A exposed to pin and area A exposed to pout, because typically
both sides of the speaker experience oscillatory pressure. As described above for ENDCAps,
thermal surface losses manifest themselves as a small change in volumetric velocity.

Note that IDUCEr and ISPEAker will crash if Zm is zero, so it is best to use VDUCEr or
VSPEAker for mechanically ideal or resonant transducers.

B.4 Heat exchangers

Segment types: HXFRSt, HXMIDl, HXLASt; TXFRSt, TXMIDl, TXLASt;

SXFRSt, SXMIDl, SXLASt

Sample input-file segments:

HXFRST parallel-plate heat exchanger
sameas 1 Area
0.600 GasA/A
6.35e-3 m Length
1.9e-4 m y0 = half of plate spacing
-20.0 W HeatIn
300. K Est-T
sameas 0 Gas
copper solid

TXFRST tube-in-shell heat exchanger
0.2 a Area m^2

.188 b GasA/A

.400 c Length m
6.350E-03 d radius m (radius of each tube)
1.818E+05 e HeatIn W
1.000E+03 f Est-T K

sameas 0 Gas type
nickel Solid type

SXFRST Hot heat exchanger
1.029E-03 a Area m^2 total cross sectional area
0.690 b VolPor volumetric porosity

106

2.000E-02 c Length m
6.450E-05 d r_H m hydraulic radius
-284. e HeatIn W
300. f Est-T K (t)

helium Gas type
copper Solid type

*XMIDl and *XLASt use same format.

Use:

Heat exchangers are used to inject or remove heat. They necessarily have surface area,
so they experience both viscous and thermal dissipation of acoustic power. In HX...s the
thermoacoustic working fluid is between parallel plates; in TX...s it is inside cylindrical
tubes; and in SX...s the geometry is randomly-stacked screens.

Heat exchangers have a temperature difference between metal temperature and fluid
mean temperature that is proportional to the heat flow. In HX...s and TX...s the pro-
portionality constant is not well verified experimentally; we believe it to within a factor of
2.

SX...s are valid only for hydraulic radius smaller than thermal and viscous penetration
depths. There is no warning if this bound is exceeded.

Computation algorithms:

In HX... and TX... heat exchangers, p1(x) propagates according to

pout(x) = pin cos kx+ (p′in/k) sin kx,

p′out(x) = −kpin sin kx+ p′in cos kx, where p′ = dp/dx, (VI.17)

with complex wavevector k, given by

k =
ω

a

√
1 + (γ − 1)fκ/(1 + εs)

1− fν
. (VI.18)

HX...s use parallel plate geometry in computing fκ, fν , and εs:

fκ =
tanh[(1 + i)y0/δκ]

(1 + i)y0/δκ
, fν =

tanh[(1 + i)y0/δν]

(1 + i)y0/δν
,

εs =

(
Kρmcp
Ksρscs

)1/2
tanh[(1 + i)y0/δκ]

tanh[(1 + i)`/δs]
. (VI.19)

107

Similarly, TX...s use cylindrical geometry in computing fκ, fν , and εs:

fκ =
2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ]
, fν =

2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ]
,

εs =

(
Kρmcp
Ksρscs

)1/2
fκ(1 + i)r0/2δκ
tanh[(1 + i)`/δs]

. (VI.20)

In TX..., the radius is that of one circular pore, so that for a heat exchanger comprised
of N circular pores, the total cross-sectional area available to the working fluid is Nπr2

0 =
(Area)(GasA/A).

In SX...,

dp1

dx
= −iωρm

[
1 +

(1− φ)2

2(2φ− 1)

]
〈u1〉 −

µ

r2
h

(
c1(φ)

8
+
c2(φ)R1

3π

)
〈u1〉 , (VI.21)

d 〈u1〉
dx

= − iωγ

ρma2
p1 +

iωTmβ
2

ρmcp

εs + (gc + e2iθpgv)εh
1 + εs + (gc + e2iθT gv)εh

p1, (VI.22)

using

c1(φ) = 1268 − 3545φ+ 2544φ2, c2(φ) = −2.82 + 10.7φ− 8.6φ2, (VI.23)

b(φ) = 3.81 − 11.29φ+ 9.47φ2, (VI.24)

R1 = 4 |〈u1〉| rhρm/µ, (VI.25)

εs = φρmcp/(1− φ)ρscs, εh = 8ir2
h/b(φ)σ1/3δ2

κ, (VI.26)

δ2
κ = 2K/ωρmcp, (VI.27)

θp = phase(〈u1〉)− phase (p1) , θT = phase(〈u1〉)− phase
(
〈T 〉u,1

)
, (VI.28)

gc =
2

π

∫ π/2

0

dz

1 +R
3/5
1 cos3/5(z)

, gv = −2

π

∫ π/2

0

cos(2z) dz

1 +R
3/5
1 cos3/5(z)

. (VI.29)

Here, the spatial average oscillatory velocity 〈u1〉 = 〈U1〉 /φA, where φ is volumetric poros-
ity and A is regenerator cross sectional area. These expressions were derived with the
assumption that the thermal and viscous penetration depths are much larger than rh.

In HX...s and TX...s, metal temperature is computed relative to fluid mean tempera-
ture using

∆T =
Q̇

K

yeff

Πxeff
(VI.30)

where

xeff = min{peak-to-peak displacement amplitude, HX length}
yeff = min{δκ, rH},

108

with hydraulic radius rH equal to y0 for HX...s and equal to half the circular pore radius for
TX...s. This expression may be quite inaccurate, but we believe it is better than nothing.
A little experimental evidence for it is presented in J. Acoust. Soc. Am. 92, 1151 (1992).
It is the only computation in DeltaE that is not correct in the acoustic approximation. If
you dislike it, use the gas temperatures (available as outputs in the stack segment) instead
of the metal temperatures for plotting or targeting (using freetargets). In SX...s, the metal
temperature is computed relative to fluid mean temperature using

∆T =
Q̇

K

r2
h(gc − gv)

b(φ)φAxeff
(VI.31)

where again xeff = min{peak-to-peak displacement amplitude, HX length}.

There are 3 kinds of heat exchanger, depending on position relative to stack or stacks:
HXFRSt, HXLASt, and HXMIDl (and similarly for SX... and TX.... For ’FRSt and ’MIDl,
the heat flow Q̇ is an input for each pass of DeltaE; for ’LASt it is a result. Positive heat
flows into the apparatus.

’FRSt or ’MIDl: Ḣout = Ḣin + Q̇.

’LASt: Q̇ = Ḣout − Ḣin. Ḣout = [0 if next segment is INSDUct or INSCOne; Ẇout

otherwise].

B.5 Stacks

Segment types: STKSLab, STKREct, STKCIrc, STKDUct, STKCOne, STKPIns,

STKSCreen, STKPOwerlaw

Sample input-file segments:

STKSLAB parallel-plate stack
SAMEAS 1 Area
0.724 GasA/A
7.85e-2 m Length
1.8e-4 m y0 (half the plate spacing)
4.0e-5 m Lplate
SAMEAS 0 Gas
kapton Solid

STKRECT rectangular-pore stack
SAMEAS 1 Area
0.694 GasA/A
7.85e-2 m Length
2.0e-4 m a (half of pore width)

109

4.0e-5 m Lplate
4.0e-4 m b (pore area is 2a times 2b)
SAMEAS 0 Gas
stainless Solid

STKCIRC approximates hexagonal honeycomb stack
SAMEAS 1 (m^2) total area
0.81 gas area/total area
0.279 (m) length
0.50e-3 (m) radius of circular pore
0.05e-3 (m) L:half of sht thcknss
helium gas type
stainless stack material

STKDUCT boundary-layer approx
0.01 m2 area of gas
0.4 m perimeter (this duct is square)
1. m length
0.001 m2 wall material’s cross-sectional area
helium
stainless

STKCONE boundary-layer w/ taper
0.01 m2 area of gas
0.35 m perimeter
1. m length
sameas 8a
sameas 8b
0.001 m2 wall material’s cross-sectional area
helium
stainless

STKPINS Muller/Keolian pinstack invention
sameas 2a a area m^2
3.2e-4 b 2y0 m 2y0 = nearest-neighbor center-to-center distance
! in the hexagonal lattice
0.1 c Length m
4.e-5 d R pin m pin radius
helium
stainless

STKSCreen a screen regenerator
sameas 1a a Area m^2 cross section of regenerator

.673 b VolPor volumetric porosity
5.500E-02 c Length m
1.830E-05 d r_H m hydraulic radius
.300 e KsFrac fudge factor F for solid conduction

sameas 0 Gas type
stainless Solid type

STKPOwerlaw an etched foil regenerator
sameas 1a a Area m^2 cross section of regenerator

.700 b VolPor volumetric porosity
0.04 c Length m

40.e-6 d r_H m hydraulic radius
.300 e KsFrac fudge factor for solid conduction

36. f f_con

110

1.0 g f_exp
24. h h_con
0.8 i h_exp

sameas 0 Gas type
stainless Solid type

Use:

If you don’t know what stacks are used for, read some background material on thermoa-
coustics.

Use STKSLab for parallel-plate or jellyroll stacks (or regenerators). Use STKREct for
square or rectangular pores whose aspect ratio is not large [see Arnott, Bass, & Raspet,
J. Acoust. Soc. Am. 90, 3228 (1991).]. Use STKCIrc for circular or hexagonal pores. Use
STKPIns for stacks comprised of pin arrays (see J. Acoust. Soc. Am. 94, 941 (1993)). If pore
size or plate separation is much greater than thermal and viscous penetration depths, use
STKDUct or STKCOne. Use STKSCreen for stacked-screen regenerator (see Swift and Ward,
“Simple harmonic analysis of stacked-screen regenerators,” submitted to J. Thermophys.
and Heat Trans. (1995)). Use STKPOwerlaw for Ron Yaron’s etched-foil regenerator, or any
other regenerator for which friction factor and heat-transfer coefficients follow power laws
in Reynolds number.

Each end of a stack must abut a heat exchanger or another stack.

Computation algorithm:

Except in STKSCreen and STKPOwerlaw, pressure propagates according to Rott’s wave
equation

(
1 +

(γ − 1)fκ
1 + εs

)
p1 +

ρma
2

ω2Afluid

d

dx

(
Afluid

1− fν
ρm

dp1

dx

)
− β

a2

ω2

(fκ − fν)

(1− σ)(1 + εs)

dTm
dx

dp1

dx
= 0,

(VI.32)
subject to the condition that energy flow Ḣ2 is independent of x, which imposes the fol-
lowing condition on Tm(x):

Ḣ2 =
Afluid

2ωρm
=

[
dp̃1

dx
p1(1− f̃ν −

Tmβ(fκ − f̃ν)

(1 + εs)(1 + σ)
)

]

+
Afluidcp

2ω3ρm(1− σ)

dTm
dx

dp1

dx

dp̃1

dx
=

[
f̃ν +

(fκ − f̃ν)(1 + εsfν/fκ)

(1 + εs)(1 + σ)

]

111

− (AfluidK + AsolidKs)
dTm
dx

(VI.33)

For STKSLab,

fκ =
tanh[(1 + i)y0/δκ]

(1 + i)y0/δκ
, fν =

tanh[(1 + i)y0/δν]

(1 + i)y0/δν
,

εs =

(
Kρmcp
Ksρscs

)1/2
tanh[(1 + i)y0/δκ]

tanh[(1 + i)`/δs]
. (VI.34)

For STKREct,

fκ = 1−
64

π4

∑

m,n
odd

1

m2n2Ymn(δκ)
, fν = 1−

64

π4

∑

m,n
odd

1

m2n2Ymn(δν)
,

εs =

(
Kρmcp
Ksρscs

)1/2
fκ(1 + i)ab/δκ(a + b)

tanh[(1 + i)`/δs]
,

where Ymn(δ) = 1− i
π2δ2

8a2
b2(b2m2 + a2n2) (VI.35)

For STKCIrc,

fκ =
2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ]
, fν =

2J1[(i− 1)r0/δκ]

(i− 1)(r0/δκ)J0[(i− 1)r0/δκ]
,

εs =

(
Kρmcp
Ksρscs

)1/2
fκ(1 + i)r0/2δκ
tanh[(1 + i)`/δs]

. (VI.36)

For STKDUct or STKCOne,

fκ = (1− i)Πδκ/2A, fν = (1− i)Πδν/2A,

εs =

(
Kρmcp
Ksρscs

)1/2
1

tanh[(1 + i)`/δs]
, where ` =

wall x-sect area

perimeter
, (VI.37)

so long as 2A/Πδν < 30. Otherwise, for 2A/Πδν < 25, the functions are the same as for
STKCIrc. In between, a linear combination is used.

For STKPIns,

fν = − δν
(i− 1)

2ri
r2
o − r2

i

Y1[(i− 1)ro/δν]J1[(i− 1)ri/δν]− J1[(i− 1)ro/δν]Y1[(i− 1)ri/δν]

Y1[(i− 1)ro/δν]J0[(i− 1)ri/δν]− J1[(i− 1)ro/δν]Y0[(i− 1)ri/δν]
,

fκ = − δκ
(i− 1)

2ri
r2
o − r2

i

Y1[(i− 1)ro/δκ]J1[(i− 1)ri/δκ]− J1[(i− 1)ro/δκ]Y1[(i− 1)ri/δκ]

Y1[(i− 1)ro/δκ]J0[(i− 1)ri/δκ]− J1[(i− 1)ro/δκ]Y0[(i− 1)ri/δκ]
,

and

εs =

(
Kρmcp
Ksρscs

)1/2 J0(
√
−iω/κsri)

J1(
√
−iω/κsri)

fκ
√
−iω/κ

r2
o − r2

i

2ri
. (VI.38)

112

In STKSLabs, STKRECts, STKCIrcs, and STKPIns, the “Area” (the first line of the input
file) is the total cross sectional area of the stack assembly, including both fluid cross section
and solid cross section. In STKSLabs, STKRECts, and STKCIrcs, Afluid = (Area)× (GasA/A)
and Asolid = (Area)× (1 − GasA/A). Plate thickness (the 4th line of the input file) is used
only for computing εs, not for computing heat conduction along x or what fraction of the
Area is available to the fluid. This allows separate accounting for area blocked by “ideal”
fins and by support struts or other structure. In most cases, εs is near 0, so plate thickness
need not be specified with much accuracy; GasA/A is far more important. Because of the
need to compute specialized functions, STKCIrcs compute more slowly than STKSLabs or
STKDUcts; STKPIns are slower still, and STKREcts are very slow, especially for large aspect
ratios. In the latter case, we recommend that STKSLabs be used until initial guesses and
geometry are very close to finalized for this reason.

In stacked screen regenerators, pressure, volumetric velocity, mean temperature evolve
according to

dp1

dx
= −iωρm

[
1 +

(1− φ)2

2(2φ− 1)

]
〈u1〉 −

µ

r2
h

(
c1(φ)

8
+
c2(φ)R1

3π

)
〈u1〉 , (VI.39)

d 〈u1〉
dx

= − iωγ

ρma2
p1 + β

dTm

dx
〈u1〉+

iωβ

[
Tmβ

ρmcp

εs + (gc + e2iθpgv)εh
1 + εs + (gc + e2iθT gv)εh

p1 −
1

iω

dTm

dx

εs + (gc − gv)εh
1 + εs + (gc + e2iθT gv)εh

〈u1〉
]
,

(VI.40)

dTm

dx
=

{
<

[(
Tmβ

εs + εh(gc + e2iθpgv)

1 + εs + εh(gc + e2iθT gv)
+ 1− Tmβ

)
p1〈̃u1〉

]
− 2H2

φA

}

/

{
ρmcp
ω
=

[
εs + εh(gc − gv)

1 + εs + εh(gc + e2iθT gv)

]
〈u1〉 〈̃u1〉+ 2Keff

1− φ

φ

}
, (VI.41)

using

c1(φ) = 1268 − 3545φ+ 2544φ2, c2(φ) = −2.82 + 10.7φ− 8.6φ2, (VI.42)

b(φ) = 3.81 − 11.29φ+ 9.47φ2, (VI.43)

R1 = 4 |〈u1〉| rhρm/µ, (VI.44)

εs = φρmcp/(1− φ)ρscs, εh = 8ir2
h/b(φ)σ1/3δ2

κ, (VI.45)

δ2
κ = 2K/ωρmcp, (VI.46)

θp = phase(〈u1〉)− phase (p1) , θT = phase(〈u1〉)− phase
(
〈T〉u,1

)
, (VI.47)

113

gc =
2

π

∫ π/2

0

dz

1 +R
3/5
1 cos3/5(z)

, gv = −
2

π

∫ π/2

0

cos(2z) dz

1 +R
3/5
1 cos3/5(z)

. (VI.48)

Here, the spatial average oscillatory velocity 〈u1〉 = 〈U1〉 /φA, where φ is volumetric poros-
ity and A is regenerator cross sectional area; and Keff = FKs where F is a fudge factor
to reduce thermal conduction along x due to the poor thermal contact between adjacent
screen layers (Radebaugh recommends F ≤ 0.3). These expressions were derived with the
assumption that viscous and thermal penetration depths are much larger than rh.

STKPOwerlaw segments are calculated in the same manner as STKSCRN’s, with a few
exceptions. The friction factor and heat transfer coefficients are given by

f = fconR
fexp,

St Pr2/3 = hconR
hexp,

where Reynolds number R is defined in the usual way as

R =
4U1rhρ

φAµ
.

[Note: this is Fanning friction factor, the friction factor used by Kays and London, so that
instantaneously dp/dx = (f/rh)

1
2
ρu2.] The pressure equation is replaced by

dp1

dx
= −iωρm

[
1 +

(1− φ)2

2(2φ− 1)

]
〈u1〉 − If

µ

8r2
h

fconR
1−fexp

1 〈u1〉 (VI.49)

where

If =
2

π

∫ π

0
sin3−fexp(z)dz (VI.50)

In the volumetric velocity and mean temperature equations, these parameters are redefined
for the power law stack:

gc = R
hexp−1
1

2

π

∫ π/2

0
coshexp−1(z)dz (VI.51)

gv = −Rhexp−1
1

2

π

∫ π/2

0
cos 2z coshexp−1(z)dz

b(φ) = hcon.

(VI.52)

Values of φ, rh, F = Keff/Ks, fcon, fexp, hcon, and hextp for particular etched foil regener-
ators can be obtained from Ran Yaron.

In both STKSCreen and STKPOwerlaw segments, the trigonometric integrals are not
evaluated by DeltaE; these integrals were performed once, off-line. We now use simple
functional fits during computation of either segment type.

114

B.6 Begin, ends, mean-flow mode

Segment types: TITLE, BEGIN, HARDEnd, SOFTEnd, MEANFLOW

Sample input-file segments:

TITLE comments here are reproduced in .DAT and .OUT

BEGIN
1.0e6 Pa Mean P
500. Hz Freq.
300. K T-beg
3.0e4 Pa |p|@0
0.0 deg Ph(p)0
5.0e-4 m3/s |V|@0
0.000 deg Ph(V)0
helium Gas

MEANFLOW
1.E-04 U_m m^3/s
sameas 0 Gas type

HARDEND
0.000 R(1/Z)
0.000 I(1/Z)
SAMEAS 0 Gas type

SOFTEND
0. Re(Z)
0. Im(Z)
water

Use:

The initial segments of all input files must be TITLE and BEGIN. TITLE is just used to give
a comment field that gets reproduced in all subsequent files, so put a descriptive name in
its comment field. BEGIN is counted as the zeroth segment of the file. It is used to initialize
variables that are the same in all segments (i.e., frequency and mean pressure), and those
five variables required each pass of DeltaE to get started (i.e., real and imaginary parts
of pressure amplitude and volume velocity, and mean temperature). (Gas type isn’t really
used here, but you have to give one anyway.)

MEANFlow, when used, should always be in segment 1, immediately following the BEGIN

statement. Its presence establishes a constant mean mass flux through the subsequent
segments, and modifies the behavior of mean-flow savvy segments (currently, these are:

115

HXFRST, HXMIDL, HXLAST, STKSLAB, STKRECT, and STKCIRC). This feature is still very ex-
perimental.

Often, the final segment (except free targets) will be either HARDEnd or SOFTEnd. These
contain two default targets. Use HARDEnd if you want the complex volume velocity at the
end of the apparatus to be zero. This is the usual case in a closed system. Use SOFTEnd

if you want complex pressure amplitude at the end to be zero. We find this useful for
symmetrical systems, where SOFTEnd indicates that the rest of the apparatus is a mirror
image of what is in the input file, and forces a complex pressure node. In both ’ENDs, the
complex impedances are made dimensionless according to Z = Ap1/ρaU1, where A is the
area of the last segment with an area, and ρ and a are evaluated at the local temperature.

Disable these as targets if you want DeltaE to ignore the impedance. This approach
is useful in early stages of debugging a new model that doesn’t readily converge—it may let
you see what’s out of whack. Set these targets nonzero to model a nonzero end impedance—
or use BRANCh or OPNBRanch.

B.7 Free targets

Segment types: FREETarget, DIFFTarget, PRODTarget, QUOTArget, EFFRTarget,

COPRTarget, VOLMTarget, CONSTants

Sample input-file segments:

FREETARGET
500. Watts of power targeted at driver
3G Address of computed power at driver

DIFFTARGET
0.00 a targeted difference
1B b D1Addr
1L c D2Addr

PRODTARGET similar to DIFFTarget.
0.00 a targeted product
1B b M1Addr
1L c M2Addr

QUOTARGET
1.0 desired quotient
1A numerator address
6A denominator address

EFFRTARGET
0.2 desired 2nd law efficiency

116

7F work (numerator address)
4G heat (denominator address)
4H T hot address
6H T cold address

COPRTARGET
0.2 desired 2nd law efficiency
7G heat (numerator address)
2F work (denominator address)
6H T hot address
4G T cold address

VOLMTARGET
0.50 a targeted volume (cubic meters)
1A b BegAddr
10A c EndAddr

CONST test of CONST
1.00 a So 2.250E+03 A So*PLo
2.00 b Si 0.000 B Si*PLi
3.00 c C_1 3.00 C C_1
4.00 d C_2 4.00 D C_2
5.00 e C_3 5.00 E C_3
6.00 f C_4 6.00 F C_4
7.00 g C_5 7.00 G C_5
8.00 h C_6 8.00 H C_6
9.00 i C_7 9.00 I C_7
10.0 j C_8 10.0 J C_8
11.0 k C_9 11.0 K C_9
12.0 l C_10 12.0 L C_10
helium Gas type
ideal Solid type

Use:

Use this class of segments to create targets other than DeltaE default targets (which
include only end impedances and heat exchanger heats and temperatures). You may also
use them for simple arithmetic operations on results. While CONSTants is not itself a free
target segment, its use is usually in conjunction with them. Also, it does require a fluid
and solid line (which are ignored). Free targets do not expect such lines.

Computation algorithms:

FREETarget: no computation.

DIFFTarget: result = [D1Addr] − [D2Addr], where [] signifies value calculated at this
address.

PRODTarget: result = [M1Addr] × [M2Addr].

117

QUOTArget: result = [NumAdr] / [DenAdr].

EFFRTarget: result =
W

Qh

Th
Th − Tc

COPRTarget: result =
Qc

W

Th − Tc
Tc

VOLMTarget: result = sum of the volumes in all duct, cone, stack, compliance, and heat
exchanger segments beginning with BegAddr and ending with EndAddr (parameter
letters are inconsequential). Porosity is not used in calculating this volume—that is,
porosity is always effectively 100%.

CONSTants: output = input, except for outputs A and B, where
A = a× current outer plot loop independent variable;
B = b× current inner plot loop independent variable.
Since these constants are now outputs, their addresses can be used with any of the
free targets listed above.

B.8 Tees and unions

Segment types: TEE, TBRANch, UNION, HBRANch, HUNIOn

Sample input-file segments:

TEE branch file to load
branch.in

TBRAN the fork
4.412E+07 a Re(Zb) Pa-s/m^3 G

-3.528E+06 b Im(Zb) Pa-s/m^3 G
sameas 0 Gas type
ideal Solid type

UNION below the branch
4 segment number of SOFTEND of the TBRANCH

3.e4 |p| @ end (Pa)
0. ph(p) @end

sameas 0 Gas type
ideal Solid type

HBRAN fork with Hfrac
4.412E+07 a Re(Zb) Pa-s/m^3 G

-3.528E+06 b Im(Zb) Pa-s/m^3 G
0.49 c Hfrac G

sameas 0 Gas type
ideal Solid type

118

HUNION H matching joint 5
10 segment number of SOFTEND of the HBRANCH

4.e3 |p|End Pa =5A?
0. Ph(p)E =5B?

300. T-est K =5G?
sameas 0 Gas type
ideal Solid type

Use:

Use TBRANch for branched systems too complicated for BRANCh or OPNBRanch.

When it encounters a TBRANch, DeltaE treats subsequent segments as the sequential
members of a branch until it reaches a HARD- or SOFTEnd, then it “returns to the trunk,”
treating the rest of the segments as trunk members. If the system is multiply connected, a
UNION segment in the trunk tells DeltaE where to connect the branch’s SOFTEnd back to
the trunk.

If UNION is used, the branch’s SOFTEnd impedance targets should not be used; instead,
enable the UNION’s targets to ensure that (complex) p is equal at the SOFTEnd of the
branch and at the UNION in the trunk. The guessed branch impedance determines how
the (complex) volume velocity splits up at the TBRANch; volume velocities add at a UNION.
UNION targets are a special case in that their input values are dynamically rewritten by
DeltaE during iterations, depending on the most recent results at the named SOFTEnd.
The real input parameters (magnitude and phase of pressure) can have any value when
the input file is written. DeltaE will overwrite them during each pass with the current
magnitude and phase of pressure at the referenced SOFTEnd.

BRANCH and UNION are intended for duct networks, where temperature is constant and
hence p1 and U1 are the variables of interest. For more complex systems, the segments
HBRANCH and HUNION are energy-conserving versions of BRANCH and UNION. Use them if you
are branching at locations where Ḣ2 6= Ẇ , such as at a branch to a second stage regenerator
within a two-stage pulse tube refrigerator. HBRANCH incorporates a potential guess Hfrac,
giving the fraction of the incoming energy that goes into the branch. Use Hfrac as a guess
to hit a target down the branch, such as a temperature. HUNION incorporates an additional
potential target, that the temperature in the trunk at the union be equal to that at the
associated branch end. energy flow.

When DeltaE encounters a TEE, it loads the named file into the model, and replaces
the BEGIN segment of the branch file with a TBRANch segment. It tries to guess starting
values for the complex branch impedance, and then adjusts the addresses in any sameas

119

declarations and free target-type segments occurring in the branch (or after the branch
point) by the number of segments in the branch. Once the file has been read in, the TEE

segment disappears—the .out file and (d)isplayed segments will be the composite model.
The file may have any name (e.g. branch.in, stub.out, branch.tee), but it must be
specified with the complete suffix.

Computation algorithm:

At a TBRANch, the branch complex impedance determines how much volume velocity leaves
the trunk into the branch. At a UNION, exit volume velocity equals inlet volume velocity
plus volume velocity at the branch’s SOFTEnd.

B.9 Acoustical decomposition

Segment type: DECOMpose

Sample input-file segment:

DECOMp Termination
8.100E-03 a Area m^2 15.8 A |Pin| Pa

31.9 B |Pref| Pa
sameas 0 Gas type 4.11 C RflCoe W/W
ideal Solid type -77.9 D PhI-R deg

Use:

Use DECOM to decompose the acoustic field into incident and reflected pressure waves; that
is, solve for Pin, Pref , and φI − φR in the equation

p1 = Pine
i(−kx+φI) + Prefe

i(kx+φR), (VI.53)

where Pin, Pref , and k are considered real for this segment.

120

Computation algorithm:

Since the segments surrounding the DECOM segment are generally lossy in DeltaE, its
results are strictly valid only at that point. The magnitudes are calculated from

Pin = |p1+U1ρa/A|
2 (VI.54)

Pref = |p1−U1ρa/A|
2

and the phase difference is given by

phase

(
p1 + U1ρa/A

p1 − U1ρa/A

)
(VI.55)

The sound power reflection coefficient, (Pref/Pin)
2, is also found and given as output C.

B.10 Thermophysical properties dump

Segment type: THERMOphys

Sample input-file segment:

THERMO
sameas 0

Use:

Use THERMO to provide a record of thermophysical properties and penetration depths at a
given location in the apparatus. With plotting features, can be used to generate a table of
thermophysical properties.

B.11 ALPHABETICAL LISTING AND CROSS-REFERENCE

BEGIN: (B.6) Initializes p1, U1, and Tm at the beginning, and sets global f, pm.

BRANCH: (B.3) A side-branch with frequency-independent complex impedance.

COMPLIANCE: (B.2) A lumped acoustic compliance (with surface losses).

121

CONSTANTS: (B.7) Allows constants and plot independent variables to be used in FREETARGETS.

COPRTARGET: (B.7) Allows targeting of ratio of refrigerator COP to Carnot’s COP.

DECOMPOSE: (B.9) Decomposes wave into forward and backward traveling components.

DIFFTARGET: (B.7) Allows targeting of difference of two results.

ENDCAP: (B.2) A surface area with |p1|2 δκ loss.

EFFRTARGET: (B.7) Allows targeting of ratio of engine efficiency to Carnot’s efficiency.

FREETARGET: (B.7) Allows use of non-default target.

HARDEND: (B.6) Default inverse-impedance targets, for hard model termination.

HBRANCH: (B.8) An energy-conserving BRANCH for multi-stage refrigerators.

HXFRST: (B.4) A parallel-plate heat exchanger before a stack.

HXLAST: (B.4) A parallel-plate heat exchanger after a stack.

HXMIDL: (B.4) A parallel-plate heat exchanger between two stacks.

HUNION: (B.8) An energy-summing, temperature-matching UNION.

IDUCER: (B.3) A current-driven transducer attached as a side branch (and independent of
frequency).

IEDUCER: (B.3) An enclosed (i.e. series) current-driven transducer (and independent of
frequency).

IESPEAKER: (B.3) An enclosed (i.e. series) current-driven electrodynamic transducer.

IMPEDANCE: (B.2) A lumped-parameter series acoustic impedance.

INSCONE: (B.1) An insulated cone, with viscous and thermal dissipation.

INSDUCT: (B.1) An insulated duct, with viscous and thermal dissipation.

ISOCONE: (B.1) An isothermal cone, with viscous and thermal dissipation.

ISODUCT: (B.1) An isothermal duct, with viscous and thermal dissipation.

ISPEAKER: (B.3) A current-driven electrodynamic transducer, attached as a side branch.

MEANFLOW: (B.6) Enables nonzero mean flow superimposed on the acoustics.

OPNBRANCH: (B.3) A side-branch impedance with frequency dependence of 4π open radi-
ation impedance.

122

PISTBRANCH: (B.3) A side-branch impedance with frequency dependence of baffled piston.

PRODTARGET: (B.7) Allows targeting of product of two results.

QUOTARGET: (B.7) Allows targeting of quotient of two results.

SOFTEND: (B.6) Default impedance targets, for mirror-image model termination; also for
connection of sidebranch to UNION.

STKCIRCLE: (B.5) Thermoacoustic stack (or regenerator) comprised of array of circular
pores.

STKCONE: (B.5) Thermoacoustic element comprised of a single, conical pore.

STKDUCT: (B.5) Thermoacoustic element comprised of a single, straight pore.

STKPINS: (B.5) Thermoacoustic stack (or regenerator) comprised of array of pins.

STKPOWERLAW: (B.5) Regenerator with friction factor and heat transfer as power laws in
Reynolds number.

STKRECT: (B.5) Thermoacoustic stack (or regenerator) comprised of array of rectangular
pores.

STKSCREEN: (B.5) Regenerator comprised of stacked screens.

STKSLAB: (B.5) Slab-geometry stack or regenerator, comprised of parallel plates.

SXFRST: (B.4) A screen heat exchanger before a stack.

SXMIDL: (B.4) A screen heat exchanger after a stack.

SXMIDL: (B.4) A screen heat exchanger between two stacks.

TBRANCH: (B.8) The beginning of a side-branch series of segments.

TEE: (B.8) A temporary segment that inserts a complete file into the model. The file’s
BEGIN segment becomes a TBRANCH.

THERMOPHYSICAL: (B.10) Displays properties of gas and solid at the local temperature.

TITLE: (B.6) Comment field required at start of every file.

TXFRST: (B.4) A tubular heat exchanger before a stack.

TXLAST: (B.4) A tubular heat exchanger after a stack.

TXMIDL: (B.4) A tubular heat exchanger between two stacks.

UNION: (B.8) Matches p1 and adds U1 at union between end of side branch and trunk.

123

VDUCER: (B.3) A voltage-driven transducer attached as a side branch (and independent of
frequency).

VEDUCER: (B.3) An enclosed (i.e. series) voltage-driven transducer (and independent of
frequency).

VESPEAKER: (B.3) An enclosed (i.e. series) voltage-driven electrodynamic transducer.

VOLMTARGET: (B.7) Allows targeting of total volume of a series of segments.

VSPEAKER: (B.3) A current-driven electrodynamic transducer, attached as a side branch.

C Fluids

We provide an artificial temperature floor of 10 Kelvin to prevent DeltaE from trying to
use negative temperatures when it is really lost. Consequently, no temperature below 10
Kelvin can be used. In any case, most of the equations for the fluids are inaccurate when
this limit is reached. This floor can be modified within the (T)olerances/debugging

menu.

In what follows, ta is temperature in Kelvin, t1 is temperature in Celsius.

Unless otherwise specified, properties are computed using fits to the data compiled in
Touloukian’s TPRC series.

DeltaE looks for a 10-character field to determine fluid type. Be sure to use plenty of
trailing spaces after short fluid names like “air” to get comments like “gas-type” out of the
field.

C.1 helium

Ideal gas approximation for equation of state (including sound speed and expansion coef-
ficient) and specific heat. Transport from Touloukian:

k0=0.0025672*ta**0.716
mu=0.412e-6*ta**0.68014

124

C.2 #.###hear (helium-argon mixtures)

Number in the fluid name is helium fraction. Ideal gas approximation for equation of state
and specific heat. Transport from Touloukian.

k0he=0.0025672*ta**0.716
amuhe=0.412e-6*ta**0.68014
k0ar=(1.39e-4*ta**0.852-1.5e-8*(ta-300.)*(ta-300.))*(1.+2.e-8*pm)
amuar=(1.77e-7*ta**0.852-25.e-12*(ta-300.)*(ta-300.))*(1.+2.e-8*pm)
k0=x1*k0ar+x2*k0he-(k0ar+k0he)*x1*x2**1.5
mu=x1*amuar+x2*amuhe+0.2*(amuar+amuhe)*x1*x2

C.3 #.###hexe (helium-xenon mixtures)

Number in the fluid name is helium fraction. Ideal gas approximation for equation of state
and specific heat. Our fits to Touloukian’s transport data are only accurate for frxe < 0.5
or for frxe = 1.000:

k0he=0.0025672*ta**0.716
amuhe=0.412e-6*ta**0.68014
k0xe=4.75e-5*ta**0.84*(1.+1.e-7*pm)
amuxe=0.187e-6*ta**0.85*(1.+25.e-9*pm)
frxe=1.-fhe
k0=k0he*fhe+k0xe*frxe-2.*(k0he+k0xe)*frxe*fhe*fhe
mu=amuhe*fhe+amuxe*frxe+(amuhe+amuxe)*frxe*fhe*fhe*(0.8+3.7*fhe*fhe*(0.25-f
rxe))

C.4 neon

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k0=0.001149*ta**0.65907
mu=0.735e-6*ta**0.66065

C.5 air

Ideal gas approximation for equation of state and specific heat. Transport from Pierce,
Acoustics:

125

parameter (tps=110.4,tpa=245.4,tpb=27.6,tp0=300.,tpexp=223.8306)
k0=2.624e-2*(ta/tp0)**1.5*(tp0+tpexp)/(ta+tpa*exp (-tpb/ta))
mu=1.846e-5*(ta/tp0)**1.5*(tp0+tps)/(ta+tps)

C.6 nitrogen

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k0=0.0003609*ta**0.7512
mu=0.3577e-6*ta**0.6885

C.7 hydrogen

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k0=0.002627*ta**0.744
mu=0.19361e-6*ta**0.6723

C.8 deuterium

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k0=0.002795*ta**0.686
mu=0.2726e-6*ta**0.6721

C.9 co2 (carbon dioxide)

Ideal gas approximation for equation of state and specific heat. Transport from Touloukian:

k10=2.8646E-5*ta**1.1318
k20=3.692E-5*ta**1.0940
k0=k10+(pm-1.01e6)/(1.01e6)*(k20-k10)
u10=1.4187E-7*ta**.8216
u20=1.5416E-7*ta**.8094
mu=u10+(pm-1.01e6)/(1.01e6)*(u20-u10)

126

C.10 #.###nexe (neon-xenon mixtures)

Ideal gas approximation for equation of state and specific heat. Transport from ??: (Ther-
mal conductivity not very accurate for high xenon concentrations.)

k0he=0.001149*ta**0.65907
amuhe=0.735e-6*ta**0.66065
k0xe=4.75e-5*ta**0.84*(1.+1.e-7*pm)
amuxe=0.187e-6*ta**0.85*(1.+25.e-9*pm)
frxe=1.-fhe(ns)
k0=k0he*fhe(ns)+k0xe*frxe-1.3*(k0he+k0xe)*frxe*fhe(ns)**2.5
mu=amuhe*fhe(ns)+amuxe*frxe+0.12*(amuhe+amuxe)*frxe*fhe(ns)**4

C.11 NGcbProd (natural-gas combustion products)

Natural Gas combustion products with 5% excess air. Use around 1 atm only. Data
supplied by British Gas, with references to Pritchard. Molar weight is a gaussian curve fit
taken from Pritchard’s data between 288 K and 4000 K.

gamma=1.4
cp=gasprop(ta,1392.02d0,39.3769d0,-3.89819d0,-0.0317961d0,

& 0.0327554d0,-1.44149d-3)
if (ta.gt.2000.) then
mass=27.9495-7.81175*dexp(-((ta-4151.85)/1047.42)**2)

else
mass=27.84

endif
r=8314.
a=dsqrt(gamma*r*ta/mass)
rho=pm*mass/(r*ta)
beta=1./ta
k0=gasprop(ta,0.0997279d0,0.0125516d0,6.73728d-5,4.22761d-4,

& 1.43198d-4,1.35508d-5)
mu=gasprop(ta,50.2973d0,4.68523d0,-0.12061d0,0.0140082d0,

& -0.001488951d0,4.97968d-5)*1.d-6
goto 900
real*8 function gasprop(ta,a,b,c,d,e,f)
real*8 z,ta,a,b,c,d,e,f
z=(ta-1400)/200
gasprop=a+z*(b+ z*(c + z*(d +z*(e+f*z))))
return
end

127

C.12 sodium

Data for sodium from Foust, Sodium-NaK Engineering Handbook.

a0=2578.
at1=-.52
ap=6.1e-7
r0=950.1
rt1=-2.2976e-1
rt2=-1.46e-5
rt3=5.638e-9
c0=1.4361e3
ct1=-5.8024e-1
ct2=4.6208e-4
k0=.918e2-4.9e-2*t1
if(t1.le.500.) then
e1=.697
e2=1.235e-5

else
e1=1.04
e2=8.51e-6

endif
a=a0+at1*t1
rho=r0+rt1*t1+rt2*t1**2+rt3*t1**3
beta=(-rt1-2.*rt2*t1-3.*rt3*t1**2)/rho
bt=beta**2-(2.*rt2+6.*rt3*t1)/rho
cp=c0+ct1*t1+ct2*t1**2
rp=1./a/a+ta*beta**2/cp
bp=-beta/(rho*a**2)+2.*at1/(rho*a**3)-beta**2/rho/cp
bp=bp-2.*ta*beta*bt/rho/cp-ta*beta**3/rho/cp
bp=bp+ta*beta**2*(ct1+2.*ct2*t1)/rho/cp/cp
cpp=-ta*(beta**2+bt)/rho
c So far, everything is evaluated at p=0.
a=a+ap*pm
rho=rho+rp*pm
beta=beta+bp*pm
cp=cp+cpp*pm
gamma=1.+ta*beta**2*a**2/cp
mu=e2*rho**(1./3.)*exp (e1*rho/ta)

C.13 nak-78

This is for eutectic NaK-78. Data for sodium-potassium from Foust, Sodium-NaK Engi-
neering Handbook.

a0=2051.
at1=-.53
ap=0.
r0=876.4
rt1=-2.183e-1

128

rt2=-2.982e-5
rt3=0.
c0=970.69
ct1=-.36903
ct2=3.4309e-4
k0=21.4+2.07e-2*t1-2.2e-5*t1**2
if(t1.le.400.) then
e1=.688
e2=1.16e-5

else
e1=.979
e2=8.2e-6

endif
a=a0+at1*t1
rho=r0+rt1*t1+rt2*t1**2+rt3*t1**3
beta=(-rt1-2.*rt2*t1-3.*rt3*t1**2)/rho
bt=beta**2-(2.*rt2+6.*rt3*t1)/rho
cp=c0+ct1*t1+ct2*t1**2
rp=1./a/a+ta*beta**2/cp
bp=-beta/(rho*a**2)+2.*at1/(rho*a**3)-beta**2/rho/cp
bp=bp-2.*ta*beta*bt/rho/cp-ta*beta**3/rho/cp
bp=bp+ta*beta**2*(ct1+2.*ct2*t1)/rho/cp/cp
cpp=-ta*(beta**2+bt)/rho
c So far, everything is evaluated at p=0.
a=a+ap*pm
rho=rho+rp*pm
beta=beta+bp*pm
cp=cp+cpp*pm
gamma=1.+ta*beta**2*a**2/cp
mu=e2*rho**(1./3.)*exp (e1*rho/ta)

C.14 External—provided by user’s file.

Files can have any name valid under the operating system under which DeltaE is running,
and should end with the extension .tpf. If the root filename is the same as any pre-defined
fluids, DeltaE will replace it’s internal calculations for that fluid with those given in the
user file. To request a user-defined fluid, simply use the root file name as you would any
other fluid. The .tpf file should be in the same directory or folder as the model file. The
name of the fluid is set to the root filename of the external fluid file. Up to five distinct
external fluids can be used at one time.

Each property is specified by a line containing 1–10 real coefficients to be read in as
C0−9, where unused parameters are set to zero. The order of the property lines is ρ, cp, K,
a2, and µ. Comment lines can be added with an initial ‘!’, and blank lines are ignored.

Each of the five properties is derived from its 10 coefficients using the following equation:

property = C0 + C1
pm

T + pmC2
+ C3T + C4T

2 + C5T
C6 + C7p

2
mT

C8 + pmC9, (VI.56)

129

where T and pm are the absolute temperature (K) and mean pressure (Pa) for each point
at which a segment using the fluid is evaluated.

D Solids

We provide an artificial temperature floor of 10 Kelvin to prevent DeltaE from trying to
use negative temperatures when it is really lost. Consequently no temperature below 10
Kelvin can be used.

In what follows, ta is temperature in Kelvin, t1 is temperature in Celsius.

DeltaE looks for a 10-character field to determine solid type. Be sure to use plenty
of trailing spaces after short solid names like “mylar” to get comments like “solid-type”
out of the field.

D.1 ideal

ks, rhos, and cs are effectively infinite, so εs = 0.

D.2 copper

ks=398.-.0567*(ta-300.)
rhos=9000.
cs=420.

D.3 nickel

if (ta.lt.631) then
ks=63.8+.08066*(631.-ta)

else
ks=63.8+.02156*(ta-631.)

endif
rhos=8700.
cs=530.

D.4 stainless (stainless steel)

rhos=8274.55 -1055.23 *dexp(-((T1-2171.05)/2058.08)**2)

130

ks=(266800*ta**(-5.2)+0.21416*ta**(-1.6))**(-0.25)
cs=(1.7054e-6*ta**(-0.88962)+23324/ta**6)**(-1/3) + 15/ta

Prior to version 3.5b2, DeltaEś stainless steel properties were very inaccurate at cryo-
genic temperatures.

D.5 molybdenum

rhos= 10868.6 -2637.52 * exp (-((T1-11383.7)/9701.36)**2)
cs= 253.791 +0.0583812 *T1-2.73919e-06*T1**2
ks= (33.9616 -0.00947953 *T1-4.12809e-08*T1**2)*4.186

D.6 tungsten

cs=.13576e3*(1.-4805./ta**2)+.0091159*ta+2.31341e-9*ta**3
ks=135.5+1.05e4/ta-.023*ta
rhos=19254*(1.-3.*(-8.69e-5+3.83e-6*t1+7.92e-10*t1**2))

D.7 kapton

ks=0.2*(1.-exp(-ta/100.))
rhos=1445.-0.085*ta
cs=3.64*ta

D.8 mylar

ks=0.11+1.7e-4*ta
rhos=1400.-0.175*ta
cs=3.7*ta

D.9 External-provided by user’s file.

External solids, like external fluids, are derived from coefficients in user-written text files.
Up to five external solids can be used at once. Each property is specified by a line containing
1–10 real coefficients to be read in as C0−9, where unused parameters are set to zero. The
order of the property lines is ρs, cs, and Ks. Comment lines can be added with an initial
‘!’, and blank lines are ignored.

131

Each of the three properties is derived from its 10 coefficients using the following equa-
tion:

property = C0 + C1 exp(−TC2) + C3T + C4T
2 + C5T

C6 + C7p
2
mT

C8 + pmC9. (VI.57)

To request a user-defined solid, simply use the root file name as you would any other
solid. The .tpf file should be in the same directory or folder as the model file. If the name
matches any pre-defined solid name, the (constant) user-defined properties will replace
DeltaE’s internal calculations. External solids are similar in most respects to external
fluids; see Section V.C.12 for more relevant information.

E Menu Options

We list DeltaE’s menu options in the order in which they appear.

(r)un model instructs DeltaE to begin its computation, adjusting the elements of the
guess vector until either all targets are met or an error condition is reached. If one
or two plot-independent variables are set, DeltaE will step through them.

(w)rite current model state saves the current state in a .out file. If the file already
exists, you will be given the option of overwriting or renaming it.

(n)ew model input file brings a new .in (or .out file from the disk. If changes have
been made in the current model, the user will be prompted to save it first.

(R)estore vectors. Use this option to restore all the parameters that were changed to
their starting point after an unsuccesful iteration, then modify some value(s) and try
again. Do not use this option if the vector table has since been edited.

If you do not respond ‘y’es to the prompt about vector restoration and you have one
or both plot loops enabled, you will be give an additional option:

Restore to state before last (B)egin or (r)un (y|n)? n

Restore from a recently plotted point? y

DeltaE will now proceed to display the .plt file one line at a time. After each line
this prompt appears:

Return to this state (y|n|Q)? y

132

Typing ‘y’ at this point causes the independent plot variable(s) and all members of
the guess vector to be returned to those values displayed in the file. Typing ‘n’ (or
simply <CR>) causes the next line to be displayed. ‘Q’ skips to the end of the file
and makes no changes. No outputs are changed when this option is executed, so the
model must be (r)un again to update them; however, be sure to disable the outer
plot loop first if you want only one point. Alternatively, you can change the step or
endpoints of the plot loop and start plotting again.

This option only works on the current (open) plot file, and it is not useful until after
a run which has produced plot points.

(E)xtras This option enters a submenu containing less commonly used features (described
below).

(d)isplay shows information on the screen. It prompts the user to select the .dat file
(option d), the .plt file (option p), the entire out file (option o), or a single segment
in .out-file format (option n, the segment number). On PC or Unix platforms, these
screens have an automatic pause feature after 23 lines are typed—press <CR> to
continue, or ‘q’ to quit the display. There is no ‘backup’ yet.

(o)utput to printer is the same as “display” above, but for a printed copy instead of
screen display.

(f)orm feed printer makes the printer finish the page and spit it out after doing an
“output to printer.”

(t)hermophysical properties is used to look at properties of any gas, liquid, or solid
supported by DeltaE. The user is prompted to select material, temperature, pres-
sure, etc., with current values as defaults, selectable with a carriage return. Data are
displayed on the screen in this format:

FLUID: 0.880hexe , 302.0 K, 20.000 bar
gamma a(m/s) rho(kg/m^3) cp(J/kg/K) beta(1/K) k0(W/m/K) Prandtl mu(kg/s/m)
1.67 465.91 15.356 1078.2 .3311E-02 .10586 .2604473 2.5572E-05

Frequency= 0.16 Hz, delta_nu= 1.8250E-03 m, delta_kappa= 3.5760E-03 m
Print this? (y/n):

(e)xit DeltaE returns us to the computer’s operating system, prompting for several
choices of saving the current model state.

(p)lot another parameter adds another parameter to the plot. When a number and
capital letter is selected, its variable is added to the list of dependent plot variables.
When a number and lower case letter is selected, its variable is used as an independent
plot variable, and the user is prompted to choose it as either inner or outer loop
variable, and to give its beginning, ending, and increment (or decrement) values.

(P)lot status summary simply displays the current plot status on the screen.

133

(c)lear from vectors and plots is used to eliminate variables from the guess vector,
the target vector, the plot dependent-variable list, or the plot independent-variable
list. Remember to use lower-case letters when selecting guesses,targets, or plot inde-
pendent variables, and capital letters for plot dependent variables.

(C)lear|set all guesses&targets clears everything from the guess and target vectors,
if they contain anything. This is most useful in the early stages of model development:
If DeltaE doesn’t converge, return to your initial guesses (they may be way out of
line by now), clear everything, run it, and examine the results to see if one particular
segment is giving ridiculous results due to a typographical error in the .in file. If the
model has empty vectors after a previous (C)lear, selecting this option again causes
DeltaE to generate a set of default iteration vectors appropriate to the model.

(u)se in guess/result vector allows the user to add a new variable to the guess or
target vector (using a number and lower-case letter).

(v)ector status summary shows the current members of the guess and target vectors on
the screen.

(m)odify parameter value followed by a segment number and lower-case line letter al-
lows the user to change the value of a guess or input variable. Two special Uppercase
pseudo-parameters are also recognized. Selecting nG or nS permits the Gas type or
Solid type, respectively, of segment n to be changed by selecting interactively from a
list of all defined types (including currently active user-defined properties).

(s)pecial modes editing allows parameter linking modes to be set for any address (seg-
ment number and parameter letter) that accepts them. Special modes allow geometric
relationships to be maintained when parameters are changed by the solver, by the
user, or as an independent plot loop variable.

(D)OS command shell temporarily suspends DeltaE and executes a new DOS command
environment. This is intended to let the user examine files that are part of other
models (not available under (d)isplay), to run plotting software on recent results,
etc., without having to save all changes and leave DeltaE. To return to the program,
type exit.

E.1 (E)xtra options

The following less-used menu options are accessible after entering E to enter the (E)xtras

submenu:

(S)plit segment. This option automates the laborious process of splitting a duct segment
(or anything else that has a length) into two segments, each with half the original

134

length, correcting the sameas and free target references, and correcting the iteration,
optimization, and plot vectors. (All free targets, vectors, or sameas references to the
segment specified are incremented by one; that is, the number of the original segment
is incremented by one, and the ‘clone’ segment is effectively inserted before it.)

(K)ill segment. This option simply removes a segment from your model. It works on
any type of segment (except BEGIN), and it does nothing intelligent with any lengths
that are removed. The user must compensate another length where appropriate.

(I)nsert segment. DeltaE will prompt you for the correct number of parameters, giving
the parameter name and units. This function is not perfectly interactive. If you make
errors in typing in new parameter values, you will be left with a segment that is partly
the same as the previous occupant of this spot. You may be able to recover by using
the (m)odify value option in the main menu for numerical parameters. In the worst
case (a bad segment type, for example), you may have to (K)ill the new segment
and start over again. (I)nsert before #segments+1 is permitted to add a segment
at the very end.

(G)enerate state variable plot performs a single run to generate output of position,
area, temperature, pressure, and enthalpy throughout the model. The .spl file that
is written contains Nprint+1 (see Tolerances/debugging, below) for each integrated
segment in the model (ducts are also integrated in this mode). Non-integrated seg-
ments dsiplay one line at the beginning and one at the end processing.

(g)eometry file causes X-Y points representing a simple sketch of the model to be writ-
ten to a file ending in .geo. Plotted using most any graphing software, these points
will give a visual feel for the shape of the design. See the Section V.G for an example
plot and discussion.

(F)lip model. This will take every segment between the BEGIN and the last HARDEND or
SOFTEnd and reverse their order. Segments within TBRANches are left in their original
order, however. sameas, freetarget and plot references are all adjusted and an attempt
is made to reform the guess and target vectors. Each HSXFRst segment becomes an
HXLAst, and vice versa.

(T)olerances/debugging DeltaE has numerous internal parameters that can be altered
by the experienced user to control the amount of diagnostic information printed or
the behavior of DeltaE’s solver. The dialog that appears for this command looks
like this, if we keep all the default values by hitting <CR>:

Nprint <= 0, save only converged endpoint to .dat file.
Nprint > 0, save and display every Nprint intermediate iterations; also
If Nprint < 0, the iteration vector line is omitted.
Nprint = -1?

If PlotDat>=0, all error messages are announced.

135

Otherwise, they are only written to the .dat file.
If PlotDat>=1, all converged endpoints are written to the .dat file.
(for PlotDat=0, only the most recent)

PlotDat = 0?

Convergence tolerance (1.e-2 > tol > 1.5e-7 recommended):
Tolerance = .300E-03
New value (<CR> to keep)=?

Number of Runge-Kutta steps (should be even:)
Nint = 10?

Normalization mode: 1=standard; 2=special
mode = 1?

Solver step bound factor (.01-100 recommended):
Bound = 100.
New value (<CR> to keep)=?

(Larger values of FCNerr can speed iterations, with a
slightly less accurate endpoint. Too small a value
can cause the solver to loose its way completely.)

Solver assumed function error (>5.e-15):
FCNerr = .100E-09
New value (<CR> to keep)=?

Minimum Temperature (K):
Tmin=10.0
New value (<CR> to keep)=?

For further details of the effect of each of these parameters, refer to the discussion in
Chapter V.

(e)xit to Main Return to the main menu. Typing <CR> alone has the same effect.

F Troubleshooting, Common Problems, and Suggested Techniques

The most common problem is failure of a brand-new model to converge, and the most
common causes are order-of-magnitude typos in the input file and a premature attempt
to run DeltaE with too many variables in the guess and target vectors. The easiest
way to fix such a problem is to Clear everything from the guess and target vectors, run
DeltaE, and display the .dat file. Often it is obvious where your typo is—one of the
output variables will go wild in a supposedly innocuous segment. If not, examine the
results more closely for reasonableness. Modify suspicious variables a little, to see what
effect they have on results. Try to get the model close to converging on your desired targets
just by modifying your desired guesses one at a time, manually. Then add one guess-target
pair at a time, running DeltaE each time, examining the results, and manually modifying
your other desired guess variables to try to keep your other desired target variables under

136

control. For further diagnostic information, try using the Nprint variable, found under the
(T)olerances/debugging menu described in the previous section and in Chapter V.

It is also useful to keep the model as simple as possible. Examples:

• Rely on nonzero U in BEGIN instead of a transducer segment if possible.

• Don’t try to model a thermoacoustically-driven thermoacoustic refrigerator from
scratch without first succeeding with a thermoacoustic driver and then a piston-driven
thermoacoustic refrigerator.

• Understand the acoustics of a complicated resonator before adding the stack and
heat-exchanger segments.

• In really stubborn cases, start with only one segment; add segments one at a time,
inspecting results carefully.

Another cause of failure to converge is poor choice of guess-vector members. Obviously,
cross-sectional area of all the segments in a system has little effect on resonance frequency,
but a large effect on thermoacoustic power; similarly, it has little effect on =(1/Z) but
a large effect on <(1/Z), so don’t try using area as a guess to achieve a target =(1/Z).
Clearing vector members and running DeltaE, manually modifying potential guess-vector
members individually to see if they have significant effects on potential target-vector mem-
bers, is often educational.

The solver within DeltaE can sometimes become stuck around a local minimum, par-
ticularly if you are making incremental changes from a model that has already converged—
and often, the internal representation of the ‘best guess’ does not agree with what we would
like for a given model. Try manually changing one of the guess vector members slightly
and see if DeltaE will loose its fondness for this particular point. Or, change one of the
members of the guess vector, if you can think of an appropriate alternate.

If these steps fail, consider some of the options in (T)olerances/debugging. Some patho-
logically difficult cases converge better with tighter tolerance, alternate normalization mode,
or one of the other tuning options described at the end of Chapter V.

Always check results carefully for reasonableness, particularly when calculating compli-
cated models or using any of DeltaE’s more elaborate features. While DeltaE is a useful
tool, it is far from foolproof; for example, the shooting method can easily end up generat-
ing devices that are several wavelengths long, if initial convergence is slow. All INS-type
segments, TBRANches and UNIONs containing thermoacoustic elements also deserve special
skepticism.

137

G Error and Informational Messages

Most of DeltaE’s diagnostics are meant to be self-explanatory, but some require additional
information. In the following subsections, we offer some additional hints for the more
obscure ones.

G.1 Convergence errors

These errors occur while DeltaE’s solver is iterating during a (r)un:

This is not going well...DeltaE gives up! Associated with this error will be a
message “info=4”, and a listing of the all current guesses followed by all current
target−result values. The solver is not able to find an iteration direction that gives
improved results. During a plot loop, this error sometimes occurs multiple times,
after which the solver once again finds its way. If it persists, a revision to the solution
or target vector may be needed, or the starting point (or plot range) may need to
be shifted significantly. Examine the .dat file for clues, and think carefully about
what is occurring. Simplify the model or iteration if possible. If the error occurs
on a model that you know to have good convergence under other conditions, you
may be reaching a pathological point. You may be able to jump start it by manually
(somewhat intelligently) changing the value of one or two members of the guess vector
to put the solver on the right track, or, you may find it very stubborn at this point.
Consider revising the guess and/or target vectors, or, (C)lear all vectors and targets
and examine the outputs to see if you can find clues as to the difficulties. Often, the
desired targets may not be reachable, given the constraints you have specified. In all
cases, if you have spent some effort reaching this point, (w)rite the model to save
your work because a floating point error that could cause a crash may occur soon.

Iteration is complete but some results may not be near their targets. If the
text associated with this message is “info=1”, and a listing of the all current guesses
is followed by all current target−result values, this is a WARNING message, and
not strictly an error. It may occur quite frequently. This message is produced by
a secondary convergence check that is necessitated by the solver’s inclination to be
‘satisfied’ with agreement that may not meet the users standards. The check is in-
adequate; it simply asks if the mean square error of targets−results is at least 100
times less than tolerance (see Sec IV.H). Based on the relative magnitude of the
target values, this threshold may be inappropriate. When this error message occurs
during a plot sweep, the line written to the .plt file will be preceded by an ‘∗’ to
indicate that it requires closer examination. The most common cause of this message
is inadequate agreement between results and targets at a HARDEnd or SOFTEnd. Often,

138

the message will occur for values that are only slightly off. For a model that has this
problem, a good way to judge the quality of the results is to add the residual work
or energy flow (parameter G or H) to the plot list. If the residual flow is orders of
magnitude less than the maximum work flow, the accuracy can usually be accepted.
You may also consider setting the normalization mode to 2 (see Sec IV.H) to increase
the significance of the endpoint errors.

G.2 Input

The following messages can occur when DeltaE is reading in a model description file:

i numerical parameters expected and only j were found in segtype segment,

Segment number n. Edit model file and restart. Last input was:

This message indicates that an input parameter could not be converted into a floating
point value. The value may contain stray, inappropriate characters, or one or more
lines may be missing and DeltaE may be trying to read the fluid name as the
numerical parameter it needs. For a freetarget, be sure you have specified the initial
Target value first, even if you do not intend to use it.

Unknown segment type: segtype. The string at the beginning of the segment descrip-
tion does not match any segments in the library. Be sure that at least the first
five characters are UPPERcase. The error could also be stray lines; for example,
specifying the plate type twice.

Illegal fluid: fluid string. This message occurs when DeltaE cannot find the re-
quested fluid in the internal library or as a fluid.tpf file in the current directory.
Check the spelling of the fluid and be sure that there are enough spaces to fill a
10-character field before any other text occurs. If you are using an external fluid, be
sure the file is present in the same directory. If all this appears correct, you may have
one line too many of numerical parameters (the giveaway here will be the contents of
fluid string).

Unknown plate material: plate string. The comments regarding the Illegal fluid

message, above, also apply to the plate (solid) specification; however, the default
ideal solid type may also be specified by a blank line. If this is the intent, be sure
that a blank line truly separates each segment module.

Error reading segment/parameter address in segtype segment, Segment number n.
This error occurs while reading in one of the freetargets (see Sec. V.B.7) or when pro-
cessing a sameas reference. The characters read do not decode to a valid address in
the model.

139

More than 5 external fluids found....

More than 5 external solids found....

Only five distinct types of user-defined fluids or plates are allowed in a model at one
time.

Guess/Result vectors are too long. Reduce count before proceeding. The
maximum problem order for this version of DeltaE is 12.

Too many plot parameters are selected. Reduce count before proceeding.

Up to 13 parameters for plotting can be specified, and the first N of these, where N is
the guess vector length, will be selected automatically; these cannot be cleared. You
must clear one of the user-selected parameters. In addition, one or two independent
variables are also part of the ‘plot’ file.

Nested TEE files are not permitted...compile one at a time. An input file
named in a TEE statement in turn contains another TEE statement. This is not
supported. Running DeltaE on the input file first will generate a combined file that
can then be included as a branch.

G.3 Model editing

The messages below occur when a model is being modified online:

*** sameas relationship cancelled... The parameter you are affecting, by using it
in the guess vector, making it an independent plot variable, or (m)odifying it, is
not specified directly, but through a sameas statement. This connection is severed,
and the parameter takes on the value it currently has, until you (or DeltaE) give it
another.

*** Special mode affecting this value must be disabled first. This parame-
ter is linked back to another parameter that may change, and thereby, modify this
value. Such a link is not appropriate if you are trying to set the value independently,
or if DeltaE will try to do so while it is plotting or iterating; therefore, you will get
the message above when you are try to modify it or make it a guess or an indepen-
dent plot variable. (d)isplay this segment to find the root of this link that must be
cleared. It is indicated in () to the right of the parameter description.

This variable must be cleared from the guess vector first.

A guess vector member cannot be the target of a link (it may be the root), or an
independent plot variable, nor may contain a sameas statement.

140

This parameter is part of a plot loop. It cannot participate in the guess

vector. Using this parameter as a guess would alter the independent variable of the
plot loop as the solver iterates.

This output is not in any vector. An attempt was made to (c)lear a parameter
that has not been (u)sed or (p)lotted in the target or plot vectors.

WARNING: could not find appropriate default targets. Modify

iteration vectors before solving this model. While trying to generate a set
of guess and target vectors, DeltaE could not find anything suitable. Be sure all
HXFRST, STK*s, and HXLASts (or HXMIDls) are in proper sequence, and if this is not
the problem, DeltaE is not smart enough to help in this case: set your vectors
manually.

G.4 Consistency checks

These errors are detected when DeltaE begins processing during a (r)un:

FATAL Error: First segment must be BEGIN. A BEGIN segment is required as the first
segment for any model you intend to (r)un; without it, DeltaE has no values for
the initial conditions.

SAMEAS parameter types do not match SAMEAS error: Seg# n, Parameter p. Ex-
cept for freetargets (see Sec. V.B.7), all parameters specified by sameas must have a
parameter description that matches the root values description through the first four
characters. Hence, parameter a in a duct may come from areaI or areaF of a cone,
but not from its length.

Circular reference found processing SAMEAS Circular SAMEAS: Seg# n. This pa-
rameter is not rooted in an actual value. It is specified by a sameas that, either
directly or through additional references, refers back to the same address.

WARNING: you have i guess vector members and j target vector members defined.

You must either add k new target parameters or delete k guesses.

The guess and target vectors have different lengths. You must take some action to
balance them.

Adjustable length segment cannot refer to itself. The length of this segment
(parameter c) is either linked to itself or to another segment’s length that, either
directly or through additional segments, is linked back to this segment.

141

H Known Bugs and Limitations

• DeltaE’s internal solver is very efficient at converging to solutions for complicated
systems; however, it knows nothing about acoustics, or any part of physics, for that
matter. If it ventures too far, it can give you more wavelengths than you intended
before reaching resonance. DeltaE does not know that negative frequencies, negative
pressures, or negative lengths are improper; it simply does the math. In short, the
reasonableness of the answers produced will almost always depend on the quality of
the initial guesses.

• Numbers stored in .out files are stored with much less precision than DeltaE ac-
tually maintains internally. Sometimes, after storing a file in a particularly difficult
computation, the solver will converge a little differently if the file is loaded back in
and run again.

• Not all floating point errors are successfully trapped on all systems; some can cause
the program to crash and lose unsaved work. Save your work frequently if you are
exploring uncharted territory!

I Registration

While there is no formal registration for this program, no fees, and no support or warranty
of any kind (please read the copyright notice), we are interested in maintaining a list of
users so that we can log any bugs that are found and notify known users of the remedies.
If you use this program, please send your name, address, and any comments to Bill Ward,
by letter, fax, or electronic mail, at the addresses below. If you find any bugs to report, we
would be especially appreciative:

Bill Ward

Los Alamos National Laboratory

Group ESA-EPE

MS J576

Los Alamos, NM 87545

Fax: 505-667-0600

E-mail: ww@lanl.gov

News of your successes using this code will encourage our sponsors to consider this
effort worthwhile and will enable us to respond to user’s questions. Please tell us how this

142

code has been helpful to you. We are grateful for your acknowledgments in publications
and reports and for mention of this work to individuals at agencies that support acoustics
research. This will improve our chance to create and pass on improvements in the future.

J Obtaining DeltaE

Fully tested software and user’s guide available from Energy Science and Technology Soft-
ware Center, US Department of Energy, Oak Ridge, Tennessee. We encourage active users
to obtain the latest development version directly from us. For a beta-test version available
to interested potential collaborators, contact ww@lanl.gov (Bill Ward) via Internet. Up-
to-date information on current DeltaE versions is maintained on the World Wide Web
server “http://rott.esa.lanl.gov”.

K Acknowledgments

The development of DeltaE has been supported in part by many agencies and entities:
Tektronix Corporation, SPAWAR, the Naval Postgraduate School, and, most importantly,
by several branches of the Department of Energy: Advanced Industrial Concepts, Materials
Science in Basic Energy Sciences, and our local Industrial Partnership Office, the Technol-
ogy Transfer Initiative Office, and the Office of Fossil Energy. A long discussion with Pat
Arnott helped us define the initial scope of this work, and comparisons with the results of
parallel-plate-stack codes (written by Al Migliori and Dick Martin) were useful in the early
stages. Suggestions by Kim Godshalk, Charles Jin, Tom Hofler, and Jeff Olson have lead
to significant improvements in DeltaE’s capability and usability. Charles Jin, Ray Rade-
baugh, and the code REGEN3.1 were indispensable in development of the stacked-screen
algorithm.

143

